working set selection
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 7 ◽  
pp. e799
Author(s):  
Zhenlong Sun ◽  
Jing Yang ◽  
Xiaoye Li ◽  
Jianpei Zhang

Support vector machine (SVM) is a robust machine learning method and is widely used in classification. However, the traditional SVM training methods may reveal personal privacy when the training data contains sensitive information. In the training process of SVMs, working set selection is a vital step for the sequential minimal optimization-type decomposition methods. To avoid complex sensitivity analysis and the influence of high-dimensional data on the noise of the existing SVM classifiers with privacy protection, we propose a new differentially private working set selection algorithm (DPWSS) in this paper, which utilizes the exponential mechanism to privately select working sets. We theoretically prove that the proposed algorithm satisfies differential privacy. The extended experiments show that the DPWSS algorithm achieves classification capability almost the same as the original non-privacy SVM under different parameters. The errors of optimized objective value between the two algorithms are nearly less than two, meanwhile, the DPWSS algorithm has a higher execution efficiency than the original non-privacy SVM by comparing iterations on different datasets. To the best of our knowledge, DPWSS is the first private working set selection algorithm based on differential privacy.


2020 ◽  
Vol 407 ◽  
pp. 366-375
Author(s):  
Shili Peng ◽  
Qinghua Hu ◽  
Jianwu Dang ◽  
Wenwu Wang

2008 ◽  
Vol 20 (2) ◽  
pp. 374-382 ◽  
Author(s):  
Tobias Glasmachers ◽  
Christian Igel

Iterative learning algorithms that approximate the solution of support vector machines (SVMs) have two potential advantages. First, they allow online and active learning. Second, for large data sets, computing the exact SVM solution may be too time-consuming, and an efficient approximation can be preferable. The powerful LASVM iteratively approaches the exact SVM solution using sequential minimal optimization (SMO). It allows efficient online and active learning. Here, this algorithm is considerably improved in speed and accuracy by replacing the working set selection in the SMO steps. A second-order working set selection strategy, which greedily aims at maximizing the progress in each single step, is incorporated.


Sign in / Sign up

Export Citation Format

Share Document