southern pines
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
Uma Karki ◽  
Bidur Paneru ◽  
Anand Tiwari ◽  
Nevershi Ellis ◽  
Shailes Bhattrai ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Karuna Paudel ◽  
Puneet Dwivedi

During the early 1900s, nearly 37 million hectares of land in the Southern United States were under longleaf pine (Pinus palustris) relative to the current area of 1.6 million hectares. This study compares the economics of southern pines (longleaf, loblolly (Pinus taeda), and slash (Pinus elliottii)) to facilitate the decision making of family forest landowners and design suitable financial incentives for increasing the area under longleaf pine in the region. We simulated six growth and yield scenarios for selected southern pines over three site indices in the Lower Coastal Plain of South Georgia. We estimated land expectation values (LEVs) of each scenario for the three cases, i.e., payment for forest products, payment for forest products and net carbon storage, and payment for forest products, net carbon storage, and net water yield. Our findings show that pine straw income significantly increases the LEV of longleaf pine. The financial risk of growing longleaf pine is lower than that of other southern pines. Existing financial support through various governmental incentives or additional monetary support for ecosystem services provided by longleaf pine ecosystems is needed to increase the area under longleaf pine in the Southern United States, in general, and in South Georgia, in particular. However, a need exists to reevaluate the conservation values provided by longleaf plantations considering expected shorter rotation ages due to the income provided by pine straw markets in Southern United States.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1155
Author(s):  
Karun Pandit ◽  
Jason Smith ◽  
Tania Quesada ◽  
Caterina Villari ◽  
Daniel J. Johnson

Pine forests in the southern United States are a major contributor to the global economy. Through the last three decades, however, there have been concerns about the decline of pine forests attributed mostly to pests and pathogens. A combination of biotic agents and environmental factors and their interaction often influences outbreaks and the resultant damage in the forests. Southern pines experience periodic mortality from bark beetles and root rot fungi and losses from fusiform rust and pitch canker have long been important for management. In recent years, there is also growing evidence of increasing damage from foliar disease in southern pines. Early detection of diseases following changes in foliar characteristics and assessment of potential risks will help us better utilize our resources and manage these forests sustainably. In this study, we used Forest Inventory and Analysis (FIA) data to explore the intensity of foliar disease in three common pines: loblolly (Pinus taeda L.), longleaf (Pinus palustris Mill.), and slash (Pinus elliottii Engelm.) in spatial and temporal terms using tree-level and climatic variables. Results from a tree-level model suggests that crown ratio may be an important factor in pine foliar disease (p < 0.1). We applied the MaxEnt model, a presence-only species distribution model (SDM), to explore any association of foliar disease incidences with the climatic variables at a landscape level. Results indicate that mean dew point temperature, maximum vapor pressure deficit, and precipitation during cold months had more influence over disease incidences than other climatic variables. While the sample size is limited as this is an emerging disease in the region, our study provides a basis for further exploration of disease detection methods, disease etiology studies, and hazard mapping.


2020 ◽  
Vol 3 ◽  
Author(s):  
Paul A. Klockow ◽  
Christopher B. Edgar ◽  
Georgianne W. Moore ◽  
Jason G. Vogel
Keyword(s):  

2020 ◽  
Vol 26 (1) ◽  
pp. 80-81
Author(s):  
Lynn Marshall Linnemeier

Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 653 ◽  
Author(s):  
Joshua Mims ◽  
Joseph O’Brien ◽  
Doug Aubrey

Carbohydrate reserves provide advantages for mature trees experiencing frequent disturbances; however, it is unclear if selective pressures operate on this characteristic at the seedling or mature life history stage. We hypothesized that natural selection has favored carbohydrate reserves in species that have an evolutionary history of frequent disturbance and tested this using three southern pine species that have evolved across a continuum of fire frequencies. Longleaf pine (Pinus palustris) roots exhibited higher maximum starch concentrations than slash (P. elliottii) and loblolly (P. taeda), which were similar. Longleaf also relied on starch reserves in roots more than slash or loblolly, depleting 64, 41, and 23 mg g−1 of starch, respectively, between seasonal maximum and minimum, which represented 52%, 45%, and 26% of reserves, respectively. Starch reserves in stems did not differ among species or exhibit temporal dynamics. Our results suggest that an evolutionary history of disturbance partly explains patterns of carbohydrate reserves observed in southern pines. However, similarities between slash and loblolly indicate that carbohydrate reserves do not strictly follow the continuum of disturbance frequencies among southern pine, but rather reflect the different seedling strategies exhibited by longleaf compared to those shared by slash and loblolly. We propose that the increased carbohydrate reserves in mature longleaf may simply be a relic of selective pressures imposed at the juvenile stage that are maintained through development, thus allowing mature trees to be more resilient and to recover from chronic disturbances such as frequent fire.


2018 ◽  
Author(s):  
Craig Echt ◽  
Sedley Josserand

2016 ◽  
Vol 150 ◽  
pp. 64-70 ◽  
Author(s):  
Narendra Sadhwani ◽  
Sushil Adhikari ◽  
Mario R. Eden ◽  
Zhouhong Wang ◽  
Ryan Baker

Sign in / Sign up

Export Citation Format

Share Document