m5p model tree
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 36 (5) ◽  
pp. 33-48
Author(s):  
Mahtab Torkan ◽  
Hamid Kalhori ◽  
Mohammad Hossein Jalalian

Shotcreting is a popular construction technique with wide-ranging applications in mining and civil engineering. Compressive strength is a primary mechanical property of shotcrete with particular importance for project safety, which highly depends on its mix design. But in practice, there is no reliable and accurate method to predict this strength. In this study, existing experimental data related to shotcretes with 59 different mix designs are used to develop a series of soft computing methodologies, including individual artificial neural network, support vector regression, and M5P model tree and their hybrids with the fuzzy c-means clustering algorithm so as to predict the 28-day compressive strength of shotcrete. Analysis of the results shows the superiority of the hybrid model over the individual models in predicting the compressive strength of shotcrete. Overall, data clustering prior to use of machine learning techniques leads to certain improvement in their performance and reliability and generalizability of their results. In particular, the M5P model tree exhibits excellent capability in anticipating the compressive strength of shotcrete.


2020 ◽  
Vol 2 (103) ◽  
pp. 62-74
Author(s):  
T. Gnananandarao ◽  
V.N. Khatri ◽  
R.K. Dutta

Purpose: The present study aims to apply soft computing techniques, Artificial Neural Network (ANN) and M5P model tree, to predict the ultimate bearing capacity of the H plan shaped skirted footing on the sand Design/methodology/approach: A total of 162 laboratory test data for the regular plan shaped (square, circular, rectangular, and strip (up to L/B = 2.5) skirted footing were collected from the literature to develop the soft computing-based models. These models were later modified for the H Plan shaped skirted footing with the introduction of the multiplication factor. The input variables chosen for the regular plan shaped footings were skirt depth to width of the footing ratio (Ds/B), friction angle of the sand (􀉭), the ratio of the interface friction angle-to-friction angle of sand (δ/􀉭), and length-to-width (L/B) ratio of the footing. The output is the bearing capacity ratio (BCR, a ratio of the bearing capacity of the skirted footing to the bearing capacity of un-skirted footing). Findings: Sensitivity analysis was carried out to see the impact of the individual variable on the BCR). The sensitivity results reveal that the skirt depth to width of the footing ratio is the primary variable affecting the BCR. Finally, the performance of the developed soft computing models was assessed using six statistical parameters. The results from the statistical parameters reveal that model developed using ANN was performing superior to the one prepared using M5P model tree technique for the prediction of the ultimate bearing capacity of H plan shaped skirted footing on sand. Research limitations/implications: The model equations are developed with experimental laboratory data. Hence, these equations need further improvement by using field data. However, until now there no field data have been available to include in the present data set. Practical implications: These proposed model equations can be used to predict the bearing capacity of the H-shaped footing with the help of Ds/B, 􀉭, δ/􀉭 and L/B without performing the laboratory experiments. Originality/value: There is no such model equation that was developed so far for the H-shaped skirted footings. Hence, an attempt was made in this article to predict the bearing capacity of the H-shaped footing by using available experimental data with the help of soft computing techniques.


Sign in / Sign up

Export Citation Format

Share Document