infrared sst
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 1)

2020 ◽  
Vol 12 (8) ◽  
pp. 1237 ◽  
Author(s):  
Minglun Yang ◽  
Lei Guan ◽  
Helen Beggs ◽  
Nicole Morgan ◽  
Yukio Kurihara ◽  
...  

Sea surface temperature (SST) measurements from the geostationary satellite Himawari-8 Advanced Himawari Imager (AHI) are compared with in situ skin SSTs derived from shipboard Infrared SST Autonomous Radiometers (ISAR) in the Australian region. The mean bias and standard deviation of the differences between Himawari-8 AHI and ISAR skin SST of best quality are 0.09 K and 0.30 K, with total matchups numbering 2701. Shipboard bulk SST measurements at depths between around 7.1 and 9.9 meters are compared with the matchups in a case study. Analyses show significant differences between skin and bulk SST measurements of maximum value 2.23 K under conditions of high diurnal warming. The results also demonstrate that Himawari-8 AHI skin SST with high temporal resolution has the ability to accurately measure diurnal warming events.


2020 ◽  
Vol 37 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Haifeng Zhang ◽  
Helen Beggs ◽  
Alexander Ignatov ◽  
Alexander V. Babanin

AbstractThe nighttime ocean cool skin signal ΔT [defined as skin sea surface temperature (SSTskin) minus depth SST (SSTdepth)] is investigated using 103 days of matchups between shipborne Infrared SST Autonomous Radiometer (ISAR) SSTskin and water intake SSTdepth at ~7.1–9.9-m depths, in oceans around Australia. Before data analysis, strict quality control of ISAR SSTskin data is conducted and possible diurnal warming contamination is carefully minimized. The statistical distribution of ΔT, and its dependencies on wind speed, heat flux, etc., are consistent with previous findings. The overall average ΔT value is −0.23 K. It is observed that the magnitude of the cool skin signal increases after midnight and a coolest skin offset (with an average value of −0.36 K) is found at around dawn. The dependency of ΔT on SST conditions is observed. Direct warm skin events are discovered when the net heat flux direction is from the atmosphere to the ocean, which is more likely to occur at high latitudes when the air is very humid and warmer than the SST. In addition, several cool skin models are validated: one widely used physical model performs best and can capture most skin-effect trends and details; the empirical models only reflect the basic features of the observed ΔT values. If the user cannot apply the physical model (due to, e.g., the algorithm complexity or missing inputs), then the empirical parameterization in the form proposed in a 2002 study can be used. However, we recommend using a new set of parameters, calculated in this study, based on much more representative dataset, and with more rigorous quality control.


2019 ◽  
Vol 11 (19) ◽  
pp. 2313 ◽  
Author(s):  
Cristina González-Haro ◽  
Aurélien Ponte ◽  
Emmanuelle Autret

The expected amplitude of fixed-point sea surface temperature (SST) fluctuations induced by barotropic and baroclinic tidal flows is estimated from tidal current atlases and SST observations. The fluctuations considered are the result of the advection of pre-existing SST fronts by tidal currents. They are thus confined to front locations and exhibit fine-scale spatial structures. The amplitude of these tidally induced SST fluctuations is proportional to the scalar product of SST frontal gradients and tidal currents. Regional and global estimations of these expected amplitudes are presented. We predict barotropic tidal motions produce SST fluctuations that may reach amplitudes of 0.3 K. Baroclinic (internal) tides produce SST fluctuations that may reach values that are weaker than 0.1 K. The amplitudes and the detectability of tidally induced fluctuations of SST are discussed in the light of expected SST fluctuations due to other geophysical processes and instrumental (pixel) noise. We conclude that actual observations of tidally induced SST fluctuations are a challenge with present-day observing systems.


Sign in / Sign up

Export Citation Format

Share Document