scholarly journals Comparison of Himawari-8 AHI SST with Shipboard Skin SST Measurements in the Australian Region

2020 ◽  
Vol 12 (8) ◽  
pp. 1237 ◽  
Author(s):  
Minglun Yang ◽  
Lei Guan ◽  
Helen Beggs ◽  
Nicole Morgan ◽  
Yukio Kurihara ◽  
...  

Sea surface temperature (SST) measurements from the geostationary satellite Himawari-8 Advanced Himawari Imager (AHI) are compared with in situ skin SSTs derived from shipboard Infrared SST Autonomous Radiometers (ISAR) in the Australian region. The mean bias and standard deviation of the differences between Himawari-8 AHI and ISAR skin SST of best quality are 0.09 K and 0.30 K, with total matchups numbering 2701. Shipboard bulk SST measurements at depths between around 7.1 and 9.9 meters are compared with the matchups in a case study. Analyses show significant differences between skin and bulk SST measurements of maximum value 2.23 K under conditions of high diurnal warming. The results also demonstrate that Himawari-8 AHI skin SST with high temporal resolution has the ability to accurately measure diurnal warming events.

2018 ◽  
pp. 5-7 ◽  
Author(s):  
Vincent Podeur ◽  
Damien Merdrignac ◽  
Morgan Behrel ◽  
Kostia Roncin ◽  
Caroline Fonti ◽  
...  

A tool dedicated to assess fuel economy induced by kite propulsion has been developed. To produce reliable results, computations must be performed on a period over several years, for several routes and for several ships. In order to accurately represent the impact of meteorological trends variations on the exploitability of the kite towing concept, a time domain approach of the problem has been used. This tool is based on the weather database provided by the ECMWF. Two sailing strategies can be selected for assessing the performance of the kite system. For a given kite area, the simulation can be run either at constant speed or at constant engine power. A validation has been made, showing that predicted consumption is close from in-situ measurement. It shows an underestimation of 11.9% of the mean fuel consumption mainly due to auxiliary consumption and added resistance in waves that were not taken into account. To conclude, a case study is performed on a 2200 TEU container ship equipped with an 800m² kite on a transatlantic route between Halifax and Le Havre. Round trip simulations, performed over 5 years of navigation, show that the total economy predicted is of around 12% at a speed of 16 knots and around 6.5% at a speed of 19 knots.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Christopher J. Merchant ◽  
Owen Embury ◽  
Claire E. Bulgin ◽  
Thomas Block ◽  
Gary K. Corlett ◽  
...  

Abstract A climate data record of global sea surface temperature (SST) spanning 1981–2016 has been developed from 4 × 1012 satellite measurements of thermal infra-red radiance. The spatial area represented by pixel SST estimates is between 1 km2 and 45 km2. The mean density of good-quality observations is 13 km−2 yr−1. SST uncertainty is evaluated per datum, the median uncertainty for pixel SSTs being 0.18 K. Multi-annual observational stability relative to drifting buoy measurements is within 0.003 K yr−1 of zero with high confidence, despite maximal independence from in situ SSTs over the latter two decades of the record. Data are provided at native resolution, gridded at 0.05° latitude-longitude resolution (individual sensors), and aggregated and gap-filled on a daily 0.05° grid. Skin SSTs, depth-adjusted SSTs de-aliased with respect to the diurnal cycle, and SST anomalies are provided. Target applications of the dataset include: climate and ocean model evaluation; quantification of marine change and variability (including marine heatwaves); climate and ocean-atmosphere processes; and specific applications in ocean ecology, oceanography and geophysics.


2013 ◽  
Vol 6 (12) ◽  
pp. 3613-3634 ◽  
Author(s):  
G. Masiello ◽  
C. Serio ◽  
I. De Feis ◽  
M. Amoroso ◽  
S. Venafra ◽  
...  

Abstract. The high temporal resolution of data acquisition by geostationary satellites and their capability to resolve the diurnal cycle allows for the retrieval of a valuable source of information about geophysical parameters. In this paper, we implement a Kalman filter approach to apply temporal constraints on the retrieval of surface emissivity and temperature from radiance measurements made from geostationary platforms. Although we consider a case study in which we apply a strictly temporal constraint alone, the methodology will be presented in its general four-dimensional, i.e., space-time, setting. The case study we consider is the retrieval of emissivity and surface temperature from SEVIRI (Spinning Enhanced Visible and Infrared Imager) observations over a target area encompassing the Iberian Peninsula and northwestern Africa. The retrievals are then compared with in situ data and other similar satellite products. Our findings show that the Kalman filter strategy can simultaneously retrieve surface emissivity and temperature with an accuracy of ± 0.005 and ± 0.2 K, respectively.


2019 ◽  
Vol 23 (2) ◽  
pp. 1179-1197 ◽  
Author(s):  
François Ritter ◽  
Max Berkelhammer ◽  
Daniel Beysens

Abstract. Dew formation is a ubiquitous process, but its importance to energy budgets or ecosystem health is difficult to constrain. This uncertainty arises largely because of a lack of continuous quantitative measurements on dew across ecosystems with varying climate states and surface characteristics. This study analyzes dew frequency from the National Ecological Observatory Network (NEON), which includes 11 grasslands and 19 forest sites from 2015 to 2017. Dew formation is determined at 30 min intervals using in situ radiometric surface temperatures from multiple heights within the canopy along with meteorological measurements. Dew frequency in the grasslands ranges from 15 % to 95 % of the nights with a strong linear dependency on the nighttime relative humidity (RH), while dew frequency in the forests is less frequent and more homogeneous (25±14 %, 1 standard deviation – SD). Dew mostly forms at the top of the canopy for the grasslands due to more effective radiative cooling and within the canopy for the forests because of higher within the canopy RH. The high temporal resolution of our data showed that dew duration reaches maximum values (∼6–15 h) for RH∼96 % and for a wind speed of ∼0.5ms-1, independent of the ecosystem type. While dew duration can be inferred from the observations, dew yield needs to be estimated based on the Monin–Obukhov similarity theory. We find yields of 0.14±0.12mmnight-1 (1 SD from nine grasslands) similar to previous studies, and dew yield and duration are related by a quadratic relationship. The latent heat flux released by dew formation is estimated to be non-negligible (∼10Wm-2), associated with a Bowen ratio of ∼3. The radiometers used here provide canopy-averaged surface temperatures, which may underestimate dew frequency because of localized cold points in the canopy that fall below the dew point. A statistical model is used to test this effect and shows that dew frequency can increase by an additional ∼5 % for both ecosystems by considering a reasonable distribution around the mean canopy temperature. The mean dew duration is almost unaffected by this sensitivity analysis. In situ radiometric surface temperatures provide a continuous, non-invasive and robust tool for studying dew frequency and duration on a fine temporal scale.


2006 ◽  
Vol 23 (5) ◽  
pp. 711-726 ◽  
Author(s):  
A. G. O'Carroll ◽  
J. G. Watts ◽  
L. A. Horrocks ◽  
R. W. Saunders ◽  
N. A. Rayner

Abstract The Advanced Along Track Scanning Radiometer (AATSR) Sea Surface Temperature (SST) Meteo product, a fast-delivery level-2 product at 10 arc min spatial resolution, has been available from the European Space Agency (ESA) since 19 August 2002. Validation has been performed on these data at the Met Office on a daily basis, with a 2-day lag from data receipt. Meteo product skin SSTs have been compared with point measurements of buoy SST, a 1° climate SST analysis field compiled from in situ measurements and Advanced Very High Resolution Radiometer (AVHRR) SSTs, and a 5° latitude–longitude 5-day averaged in situ dataset. Comparisons of the AATSR Meteo product against Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) SSTs are also presented. These validation results have confirmed the AATSR Meteo product skin SST to be within ±0.3 K of in situ data. Comparisons of the AATSR skin SSTs against buoy SSTs, from 19 August 2002 to 20 August 2003, give a mean difference (AATSR – buoy) of 0.04 K (standard deviation = 0.28 K) during nighttime, and a mean difference of 0.02 K (standard deviation = 0.39 K) during the day. Analyses of the buoy matchups have shown that there is no cool skin effect observed in the nighttime observations, implying that the three-channel AATSR product skin SST may be 0.1–0.2 K too warm. Comparisons with TMI SSTs confirm that the lower-latitude SSTs are not significantly affected by residual cloud contamination.


2009 ◽  
Vol 26 (7) ◽  
pp. 1415-1426 ◽  
Author(s):  
Yi Chao ◽  
Zhijin Li ◽  
John D. Farrara ◽  
Peter Hung

Abstract A two-dimensional variational data assimilation (2DVAR) method for blending sea surface temperature (SST) data from multiple observing platforms is presented. This method produces continuous fields and has the capability of blending multiple satellite and in situ observations. In addition, it allows specification of inhomogeneous and anisotropic background correlations, which are common features of coastal ocean flows. High-resolution (6 km in space and 6 h in time) blended SST fields for August 2003 are produced for a region off the California coast to demonstrate and evaluate the methodology. A comparison of these fields with independent observations showed root-mean-square errors of less than 1°C, comparable to the errors in conventional SST observations. The blended SST fields also clearly reveal the finescale spatial and temporal structures associated with coastal upwelling, demonstrating their utility in the analysis of finescale flows. With the high temporal resolution, the blended SST fields are also used to describe the diurnal cycle. Potential applications of this SST blending methodology in other coastal regions are discussed.


2011 ◽  
Vol 125 (12) ◽  
pp. 1244-1246 ◽  
Author(s):  
A Hesham ◽  
A Ghali

AbstractObjective:To compare Rapid Rhino and Merocel packs for nasal packing after septoplasty, in terms of patient tolerance (both with the pack in place and during removal) and post-operative complications.Materials and methods:Thirty patients (aged 18–40 years) scheduled for septoplasty were included. Following surgery, one nasal cavity was packed with Rapid Rhino and the other one with Merocel. Patients were asked to record pain levels on a visual analogue score, on both sides, with the packs in situ and during their removal the next day. After pack removal, bleeding was compared on both sides.Results:The mean ± standard deviation pain score for the Rapid Rhino pack in situ (4.17 ± 1.78) was less than that for the Merocel pack (4.73 ± 2.05), but not significantly so (p = 0.314). The mean pain score for Rapid Rhino pack removal (4.13 ± 1.76) was significantly less that that for Merocel (6.90 ± 1.67; p = 0.001). Bleeding after pack removal was significantly less for the Rapid Rhino sides compared with the Merocel sides (p <0.05).Conclusion:Rapid Rhino nasal packs are less painful and cause less bleeding, compared with Merocel packs, with no side effects. Thus, their use for nasal packing after septal surgery is recommended.


2019 ◽  
Vol 26 (06) ◽  
pp. 1850208 ◽  
Author(s):  
BOKAI LIAO ◽  
WENFENG JIA ◽  
RUIYAN SUN ◽  
ZHENYU CHEN ◽  
XINGPENG GUO

The electrochemical migration (ECM) behavior of Sn-3.0Ag-0.5Cu solder alloy under thin electrolyte layers was investigated using a technique based on the coupling of in situ electrochemical measurements and optical observation. Results showed that the mean time to failure first increased and then decreased as thickness of the electrolyte layer increased, the maximum value was present at 200[Formula: see text][Formula: see text]m. The higher the bias voltage applied, the faster was the rate of dendrite growth. And, Sn leaded the ECM of SAC305 solder alloy. Mechanisms relevant have been proposed to explain the ECM behavior of Sn-3.0Ag-0.5Cu solder alloy.


Ocean Science ◽  
2015 ◽  
Vol 11 (5) ◽  
pp. 829-837 ◽  
Author(s):  
C. Yan ◽  
J. Zhu ◽  
C. A. S. Tanajura

Abstract. An ocean data assimilation system was developed for the Pacific–Indian oceans with the aim of assimilating altimetry data, sea surface temperature, and in situ measurements from Argo (Array for Real-time Geostrophic Oceanography), XBT (expendable bathythermographs), CTD (conductivity temperature depth), and TAO (Tropical Atmosphere Ocean). The altimetry data assimilation requires the addition of the mean dynamic topography to the altimetric sea level anomaly to match the model sea surface height. The mean dynamic topography is usually computed from the model long-term mean sea surface height, and is also available from gravimetric satellite data. In this study, the impact of different mean dynamic topographies on the sea level anomaly assimilation is examined. Results show that impacts of the mean dynamic topography cannot be neglected. The mean dynamic topography from the model long-term mean sea surface height without assimilating in situ observations results in worsened subsurface temperature and salinity estimates. Even if all available observations including in situ measurements, sea surface temperature measurements, and altimetry data are assimilated, the estimates are still not improved. This proves the significant impact of the MDT (mean dynamic topography) on the analysis system, as the other types of observations do not compensate for the shortcoming due to the altimetry data assimilation. The gravimeter-based mean dynamic topography results in a good estimate compared with that of the experiment without assimilation. The mean dynamic topography computed from the model long-term mean sea surface height after assimilating in situ observations presents better results.


Sign in / Sign up

Export Citation Format

Share Document