variation of hodge structures
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2019 ◽  
Vol 15 (1) ◽  
pp. 249-299 ◽  
Author(s):  
Nick Sheridan

AbstractWe prove that the cyclic homology of a saturated $$A_\infty $$A∞ category admits the structure of a ‘polarized variation of Hodge structures’, building heavily on the work of many authors: the main point of the paper is to present complete proofs, and also explicit formulae for all of the relevant structures. This forms part of a project of Ganatra, Perutz and the author, to prove that homological mirror symmetry implies enumerative mirror symmetry.



2018 ◽  
Vol 2020 (23) ◽  
pp. 9471-9538
Author(s):  
Dan Popovici

Abstract We propose a new approach to the mirror symmetry conjecture in a form suitable to possibly non-Kähler compact complex manifolds whose canonical bundle is trivial. We apply our methods by proving that the Iwasawa manifold $X$, a well-known non-Kähler compact complex manifold of dimension $3$, is its own mirror dual to the extent that its Gauduchon cone, replacing the classical Kähler cone that is empty in this case, corresponds to what we call the local universal family of essential deformations of $X$. These are obtained by removing from the Kuranishi family the two “superfluous” dimensions of complex parallelisable deformations that have a similar geometry to that of the Iwasawa manifold. The remaining four dimensions are shown to have a clear geometric meaning including in terms of the degeneration at $E_2$ of the Frölicher spectral sequence. On the local moduli space of “essential” complex structures, we obtain a canonical Hodge decomposition of weight $3$ and a variation of Hodge structures, construct coordinates and Yukawa couplings while implicitly proving a local Torelli theorem. On the metric side of the mirror, we construct a variation of Hodge structures parametrised by a subset of the complexified Gauduchon cone of the Iwasawa manifold using the sGG property (which means that all the Gauduchon metrics are strongly Gauduchon) of all the small deformations of this manifold proved in earlier joint work of the author with L. Ugarte. Finally, we define a mirror map linking the two variations of Hodge structures and we highlight its properties.



2018 ◽  
Vol 2018 (743) ◽  
pp. 133-161 ◽  
Author(s):  
Yohan Brunebarbe

Abstract Let D be a simple normal crossing divisor in a smooth complex projective variety X. We show that the existence on X-D of a non-trivial polarized complex variation of Hodge structures with integral monodromy implies that the pair (X,D) has a non-zero logarithmic symmetric differential (a section of a symmetric power of the logarithmic cotangent bundle). When the corresponding period map is generically immersive, we show more precisely that the logarithmic cotangent bundle is big.



2016 ◽  
Vol 27 (07) ◽  
pp. 1640001 ◽  
Author(s):  
Fabrizio Catanese ◽  
Michael Dettweiler

Fujita’s second theorem for Kähler fibre spaces over a curve asserts, that the direct image [Formula: see text] of the relative dualizing sheaf splits as the direct sum [Formula: see text], where [Formula: see text] is ample and [Formula: see text] is unitary flat. We focus on our negative answer [F. Catanese and M. Dettweiler, Answer to a question by Fujita on variation of Hodge structures, to appear in Adv. Stud. Pure Math.] to a question by Fujita: is [Formula: see text] semiample? We give here an infinite series of counterexamples using hypergeometric integrals and we give a simple argument to show that the monodromy representation is infinite. Our counterexamples are surfaces of general type with positive index, explicitly given as abelian coverings with group [Formula: see text] of a Del Pezzo surface [Formula: see text] of degree 5 (branched on the union of the lines of [Formula: see text], which form a bianticanonical divisor), and endowed with a semistable fibration with only three singular fibres. The simplest such surfaces are the three ball quotients considered in [I. C. Bauer and F. Catanese, A volume maximizing canonical surface in 3-space, Comment. Math. Helv. 83(1) (2008) 387–406.], fibred over a curve of genus 2, and with fibres of genus 4. These examples are a larger class than the ones corresponding to Shimura curves in the moduli space of Abelian varieties.



2004 ◽  
Vol 8 (2) ◽  
pp. 363-390 ◽  
Author(s):  
I. C. Bauer ◽  
F. Catanese




Sign in / Sign up

Export Citation Format

Share Document