hunting motion
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 0)

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yi Wu ◽  
Jing Zeng ◽  
Sheng Qu ◽  
Huailong Shi ◽  
Qunsheng Wang ◽  
...  

Low-frequency carbody swaying on China’s high-speed trains is not only an impediment to ride comfort but it may also be an operational risk under some extreme situations. To study the mechanism and mitigate the carbody swaying problem for high-speed trains, a multibody dynamics model was established based on both linear and nonlinear analyses. Whilst it is generally assumed that carbody swaying is predominantly caused by carbody hunting motion, the results in this paper has shown that, under certain boundary conditions, bogie-hunting motion can also lead to low-frequency carbody swaying. This low-frequency swaying phenomenon was also found to be caused by the excessively low wheel-rail contact or mismatched suspension parameters. Parametric optimization analysis was accordingly conducted from the perspective of the wheel-rail contact relationship and the suspension system. The analysis indicated that although optimizing the suspension parameters can meet the requirement of vehicle stability, bogie's vibration worsen when the wheel profiles wear over time. Overall, while rail reprofiling was found to be one of the fundamental solutions to mitigate carbody swaying, it is cost prohibitive for most routine operational applications. Thus, for economic considerations and the fact that low wheel-rail contact conicity is also a contributing factor to carbody swaying, vehicles with worn wheels can also be operated on the rail line, which was successfully verified by the field data presented in this paper.


2020 ◽  
Vol 5 (2) ◽  
pp. 210-217
Author(s):  
Barenten Suciu

Recently, analytical expressions for the damped natural frequency and damping ratio were proposed for the so-called dynamical hunting, either by assuming that the wheel conicity can be neglected, or by imposing restrictions on the ratio between the lateral and longitudinal creep coefficients, and also, on the ratio of the track span to the yawing diameter. However, instead of a pair of complex conjugate roots, and two real roots, of opposite sign, two pairs of complex conjugate roots were obtained for the characteristic equation. Purpose of this work is to achieve accurate expressions for the damping associated to the hunting motion, without imposing geometrical or tribological limitations into the vibration model, and to evaluate the error on the damping ratio, introduced by the simplified models. Also, nature of the roots of the characteristic equation is discussed, relative to the critical speed of the railway vehicle.


Sign in / Sign up

Export Citation Format

Share Document