progeny tuber
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Plant Disease ◽  
2015 ◽  
Vol 99 (4) ◽  
pp. 474-481 ◽  
Author(s):  
Raymond J. Taylor ◽  
Julie S. Pasche ◽  
Neil C. Gudmestad

Although Phytophthora nicotianae is not normally considered to be an important pathogen of potato (Solanum tuberosum), intermittent outbreaks of a foliar blight and tuber rot have been reported in the United States over the past 75 years. Due to the sporadic nature of these reports, little is known about the etiology of the disease in potato. However, foliar disease and tuber rots caused by this pathogen are usually centered near areas of standing water in the field and along pivot tracks. Moreover, soil particles adhering to the foliage of infected potato plants suggest that water splash is involved in P. nicotianae dissemination and infection. Soil infestation and water splash dissemination studies were conducted under greenhouse conditions to examine the role that zoospores of P. nicotianae may play in disease on potato. In the soil infestation study, inoculum of P. nicotianae was added to soil at four rates (0.0, 1.0 × 103, 5.0 × 103, and 4.0 × 104 zoospores/ml) and three timings (at planting and 7 and 14 days after planting). Direct infection of aboveground plant tissues was achieved via splash dissemination of inoculum onto potato foliage. All soil infestations significantly reduced emergence, with the exception of the 1.0 × 103 zoospores/ml treatment, and no plants emerged from soil infested with 4.0 ×104 zoospores/ml. Significant reductions in stem number were observed with infestations of 1.0 × 103 and 5.0 × 103 zoospores/ml at planting and 5.0 × 103 zoospores/ml at 7 days after planting. Progeny tuber infections were confirmed with infestations at 1.0 × 103 zoospores/ml at planting and 7 days after planting. Lesions developed on leaflets, petioles, leaf axils, and stems in all water splash dissemination treatments within 3 days of inoculation, significant differences in the lesion number were observed, and disease severity generally was proportional to inoculum concentration. Relative area under the disease progress curve of the 5.0 × 103 and 4.0 × 104 zoospores/ml splash dissemination treatments was significantly greater than the 0.0 zoospore and 1.0 × 103 zoospores/ml treatments. Progeny tuber infections were observed with all water splash dissemination treatments but infection rates did not differ significantly among treatments. These studies confirm the hypothesis that water splash dissemination of P. nicotianae inoculum is a likely means by which infections of this pathogen are initiated in potato.



Author(s):  
Z. Basky

Aphids were collected by Moericke yellow pan traps placed in the potato fields. The cumulative vector intensity is an index that describes the vector abundance and their propensity to transmit PVY (3). The vector intensity was obtained as the number of known PVY vector species caught and multiplied by their relative vector efficiency value. Cumulative vector intensity for the season was calculated by accumulating species-specific vector intensity values at each trapping date. In those places where the number of PVY vectors caught by yellow pan traps were the highest (1194, 1495 and 663, 570, respectively), the cumulative vector intensity was also the highest (322 and 570, respectively). This high vector intensity resulted in high progeny tuber infection 21 and 31 %, respectively. In those years when the cumulative vector intensity did not reach the value of 10 until the end of June and the beginning of July the proportion of PVY infected progeny tubers met the requirements of the standard, it was less than 5 %. The cumulative vector intensity seems to be a reliable way to forecast virus threat to seed potato. Both seasonal variation and vector abundance is reflected in cumulative vector intensity, above all propensity of different vector species is included in the calculation. As the virus translocation from leaves to tubers takes 12-14 days. Therefore it is imperative that immediately after weekly trap catches cumulative vector intensity values are calculated, as when values reach around ten growers in seed potato growing region will have 12 days to execute killing leaves and stems of seed potatoes.



2003 ◽  
Vol 52 (2) ◽  
pp. 119-126 ◽  
Author(s):  
I. K. Toth ◽  
L. Sullivan ◽  
J. L. Brierley ◽  
A. O. Avrova ◽  
L. J. Hyman ◽  
...  


2000 ◽  
Vol 136 (1) ◽  
pp. 41-46 ◽  
Author(s):  
P D JENKINS ◽  
H ALI


Sign in / Sign up

Export Citation Format

Share Document