virtual measuring instrument
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Vol 21 (5) ◽  
pp. 136-141
Author(s):  
Przemysław Otomański ◽  
Eligiusz Pawłowski ◽  
Anna Szlachta

Abstract The paper presents a possible application of integrated LabVIEW environment to the final evaluation of measurement results in direct measurement. The possibilities of presenting and visualizing the uncertainty of measurement results in a convenient and user-friendly form are also discussed. The topics discussed in the paper were presented using a developed application in LabVIEW. The paper discusses the topic of measurement of direct voltages in the presence of strong electromagnetic interferences. These problems are frequently omitted or hardly emphasized. It presents a suitable measuring system, a virtual measuring instrument created in the LabVIEW environment, and the results of tests carried out for an example NI PCI-6221 data acquisition board. The described approach can be applied also in other measurement situations.


2014 ◽  
Vol 613 ◽  
pp. 101-107
Author(s):  
Dominic Gnieser ◽  
Carl Georg Frase ◽  
Harald Bosse ◽  
Rainer Tutsch

To assure the metrological traceability of a measurement, it is required to perform an analysis of the measurement uncertainty specific to the measurement task. An approach to estimate the measurement uncertainty for complex systems is the so-called virtual measuring instrument: The measuring process is simulated taking into account its influencing parameters and a statistical analysis is performed by means of Monte-Carlo calculations. We present the development of such a virtual measuring instrument for scanning electron microscopy (SEM) which allows to estimate the measurement uncertainty in compliance with GUM for dimensional measuring tasks in nano- and microsystems technology. By application of this virtual instrument, model based corrections of systematic errors are made possible and the cognition of the strength of different perturbing influences can lead to recommendations to optimize measurement instruments and methods. The virtual model programmed in MATLAB is called ‘vREM’, it includes all essential components of the measuring chain of an SEM as modules: The electron source, the electron-optical lens-system, the scan-generator, the interaction of the electrons within the object, electron detectors, simple analysis procedures and consideration of external disturbances. By adjusting parameters uncertainty contributions can be assigned to the virtual probe, the virtual specimen and the virtual detector signals.


Sign in / Sign up

Export Citation Format

Share Document