quantum integrable models
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 7)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Andrew Liashyk ◽  
Stanislav Pakuliak

Abstract The zero modes method is applied in order to get action of the monodromy matrix entries onto off-shell Bethe vectors in quantum integrable models associated with $U_q(\mathfrak{gl}_N)$-invariant $\RR$-matrices. The action formulas allowto get recurrence relations for off-shell Bethe vectors and for highest coefficients of the Bethe vectors scalar product.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Xiong Le ◽  
Yi Qiao ◽  
Junpeng Cao ◽  
Wen-Li Yang ◽  
Kangjie Shi ◽  
...  

Abstract Finding out root patterns of quantum integrable models is an important step to study their physical properties in the thermodynamic limit. Especially for models without U(1) symmetry, their spectra are usually given by inhomogeneous T − Q relations and the Bethe root patterns are still unclear. In this paper with the antiperiodic XXZ spin chain as an example, an analytic method to derive both the Bethe root patterns and the transfer-matrix root patterns in the thermodynamic limit is proposed. Based on them the ground state energy and elementary excitations in the gapped regime are derived. The present method provides an universal procedure to compute physical properties of quantum integrable models in the thermodynamic limit.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Pengcheng Lu ◽  
Yi Qiao ◽  
Junpeng Cao ◽  
Wen-Li Yang ◽  
Kang jie Shi ◽  
...  

Abstract A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t − W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving the NLIE. This method can be generalized to other lattice quantum integrable models. Taking the SU(3)-invariant quantum spin chain as an example, we construct the corre- sponding NLIEs and compute the free energy. The present results coincide exactly with those obtained via other methods previously.


Author(s):  
Sergey E. Derkachov ◽  
◽  
Karol K. Kozlowski ◽  
Alexander N. Manashov ◽  
◽  
...  

This work develops a new method, based on the use of Gustafson's integrals and on the evaluation of singular integrals, allowing one to establish the unitarity of the separation of variables transform for infinite-dimensional representations of rank one quantum integrable models. We examine in detail the case of the SL(2,R) spin chains.


Author(s):  
Andrii Liashyk ◽  
◽  
Stanislav Z. Pakuliak ◽  

We consider relations between Gauss coordinates of T-operators for the Yangian doubles of the classical types corresponding to the algebras g of A, B, C and D series and the current generators of these algebras. These relations are important for the applications in the quantum integrable models related to g-invariant R-matrices and construction of the Bethe vectors in these models.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Axel Cortes Cubero ◽  
Milosz Panfil

Within the generalized hydrodynamics (GHD) formalism for quantum integrable models, it is possible to compute simple expressions for a number of correlation functions at the Eulerian scale. Specializing to integrable relativistic field theories, we show the same correlators can be computed as a sum over form factors, the GHD regime corresponding to the leading contribution with one particle-hole pair on a finite energy-density background. The thermodynamic bootstrap program (TBP) formalism was recently introduced as an axiomatic approach to computing such finite-energy-density form factors for integrable field theories. We derive a new axiom within the TBP formalism from which we easily recover the predicted GHD Eulerian correlators. We also compute higher form factor contributions, with more particle-hole pairs, within the TBP, allowing for the computation of correlation functions in the diffusive, and beyond, GHD regimes. The two particle-hole form factors agree with expressions recently conjectured within the GHD.


Author(s):  
Joel E. Moore

Two of the most active areas in quantum many-particle dynamics involve systems with an unusually large number of conservation laws. Many-body-localized systems generalize ideas of Anderson localization by disorder to interacting systems. While localization still exists with interactions and inhibits thermalization, the interactions between conserved quantities lead to some dramatic differences from the Anderson case. Quantum integrable models such as the XXZ spin chain or Bose gas with delta-function interactions also have infinite sets of conservation laws, again leading to modifications of conventional thermalization. A practical way to treat the hydrodynamic evolution from local equilibrium to global equilibrium in such models is discussed. This paper expands upon a presentation at a discussion meeting of the Royal Society on 7 February 2017. The work described was carried out with a number of collaborators, including Jens Bardarson, Vir Bulchandani, Roni Ilan, Christoph Karrasch, Siddharth Parameswaran, Frank Pollmann and Romain Vasseur. This article is part of the themed issue ‘Breakdown of ergodicity in quantum systems: from solids to synthetic matter’.


Sign in / Sign up

Export Citation Format

Share Document