quantum integrable systems
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Xiong Le ◽  
Yi Qiao ◽  
Junpeng Cao ◽  
Wen-Li Yang ◽  
Kangjie Shi ◽  
...  

Abstract Finding out root patterns of quantum integrable models is an important step to study their physical properties in the thermodynamic limit. Especially for models without U(1) symmetry, their spectra are usually given by inhomogeneous T − Q relations and the Bethe root patterns are still unclear. In this paper with the antiperiodic XXZ spin chain as an example, an analytic method to derive both the Bethe root patterns and the transfer-matrix root patterns in the thermodynamic limit is proposed. Based on them the ground state energy and elementary excitations in the gapped regime are derived. The present method provides an universal procedure to compute physical properties of quantum integrable models in the thermodynamic limit.


2021 ◽  
Vol 111 (4) ◽  
Author(s):  
Anastasia Doikou ◽  
Agata Smoktunowicz

AbstractConnections between set-theoretic Yang–Baxter and reflection equations and quantum integrable systems are investigated. We show that set-theoretic R-matrices are expressed as twists of known solutions. We then focus on reflection and twisted algebras and we derive the associated defining algebra relations for R-matrices being Baxterized solutions of the A-type Hecke algebra $${\mathcal {H}}_N(q=1)$$ H N ( q = 1 ) . We show in the case of the reflection algebra that there exists a “boundary” finite sub-algebra for some special choice of “boundary” elements of the B-type Hecke algebra $${\mathcal {B}}_N(q=1, Q)$$ B N ( q = 1 , Q ) . We also show the key proposition that the associated double row transfer matrix is essentially expressed in terms of the elements of the B-type Hecke algebra. This is one of the fundamental results of this investigation together with the proof of the duality between the boundary finite subalgebra and the B-type Hecke algebra. These are universal statements that largely generalize previous relevant findings and also allow the investigation of the symmetries of the double row transfer matrix.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Andrea Cavaglià ◽  
Nikolay Gromov ◽  
Fedor Levkovich-Maslyuk

Abstract The major simplification in a number of quantum integrable systems is the existence of special coordinates in which the eigenstates take a factorised form. Despite many years of studies, the basis realising the separation of variables (SoV) remains unknown in $$ \mathcal{N} $$ N = 4 SYM and similar models, even though it is widely believed they are integrable. In this paper we initiate the SoV approach for observables with nontrivial coupling dependence in a close cousin of $$ \mathcal{N} $$ N = 4 SYM — the fishnet 4D CFT. We develop the functional SoV formalism in this theory, which allows us to compute non-perturbatively some nontrivial observables in a form suitable for numerical evaluation. We present some applications of these methods. In particular, we discuss the possible SoV structure of the one-point correlators in presence of a defect, and write down a SoV-type expression for diagonal OPE coefficients involving an arbitrary state and the Lagrangian density operator. We believe that many of the findings of this paper can be applied in the $$ \mathcal{N} $$ N = 4 SYM case, as we speculate in the last part of the article.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kazunobu Maruyoshi ◽  
Toshihiro Ota ◽  
Junya Yagi

Abstract We establish a correspondence between a class of Wilson-’t Hooft lines in four-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric gauge theories described by circular quivers and transfer matrices constructed from dynamical L-operators for trigonometric quantum integrable systems. We compute the vacuum expectation values of the Wilson-’t Hooft lines in a twisted product space S1 × ϵ ℝ2 × ℝ by supersymmetric localization and show that they are equal to the Wigner transforms of the transfer matrices. A variant of the AGT correspondence implies an identification of the transfer matrices with Verlinde operators in Toda theory, which we also verify. We explain how these field theory setups are related to four-dimensional Chern-Simons theory via embedding into string theory and dualities.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Takato Yoshimura ◽  
Herbert Spohn

For quantum integrable systems the currents averaged with respect to a generalized Gibbs ensemble are revisited. An exact formula is known, which we call ``collision rate ansatz". While there is considerable work to confirm this ansatz in various models, our approach uses the symmetry of the current-charge susceptibility matrix, which holds in great generality. Besides some technical assumptions, the main input is the availability of a self-conserved current, i.e. some current which is itself conserved. The collision rate ansatz is then derived. The argument is carried out in detail for the Lieb-Liniger model and the Heisenberg XXZ chain. It is also explained how from the existence of a boost operator a self-conserved current can be deduced.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Min-xin Huang ◽  
Yuji Sugimoto ◽  
Xin Wang

Abstract We study a class of quantum integrable systems derived from dimer graphs and also described by local toric Calabi-Yau geometries with higher genus mirror curves, generalizing some previous works on genus one mirror curves. We compute the spectra of the quantum systems both by standard perturbation method and by Bohr-Sommerfeld method with quantum periods as the phase volumes. In this way, we obtain some exact analytic results for the classical and quantum periods of the Calabi-Yau geometries. We also determine the differential operators of the quantum periods and compute the topological string free energy in Nekrasov-Shatashvili (NS) limit. The results agree with calculations from other methods such as the topological vertex.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Heng-Yu Chen ◽  
Taro Kimura ◽  
Norton Lee

Abstract In this note, we establish several interesting connections between the super- group gauge theories and the super integrable systems, i.e. gauge theories with supergroups as their gauge groups and integrable systems defined on superalgebras. In particular, we construct the super-characteristic polynomials of super-Toda lattice and elliptic double Calogero-Moser system by considering certain orbifolded instanton partition functions of their corresponding supergroup gauge theories. We also derive an exotic generalization of 𝔰𝔩(2) XXX spin chain arising from the instanton partition function of SQCD with super- gauge group, and study its Bethe ansatz equation.


2020 ◽  
Vol 15 ◽  
pp. 3
Author(s):  
Igor Loutsenko ◽  
Oksana Yermolayeva

We review applications of theory of classical and quantum integrable systems to the free-boundary problems of fluid mechanics as well as to corresponding problems of statistical mechanics. We also review important exact results obtained in the theory of multi-fractal spectra of the stochastic models related to the Laplacian growth: Schramm-Loewner and Levy-Loewner evolutions.


Sign in / Sign up

Export Citation Format

Share Document