aqueous nanostructures
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 0)

Homeopathy ◽  
2021 ◽  
Author(s):  
Shahram Shahabi ◽  
John P. Borneman

AbstractThis paper attempts to propose a model, called the electrostatic model of homeopathy, to explain a mechanism for the physicochemical activities of highly diluted homeopathic medicines (HMs). According to this proposed model, the source of HMs' action is dipole orientations as electrostatic imprints of the original molecules carried by diluent molecules (such as sugar molecules) or potentization-induced aqueous nanostructures. The nanoscale domains' contact charging and dielectric hysteresis play critical roles in the aqueous nanostructures' or sugar molecules' acquisition of the original molecules' dipole orientations. The mechanical stress induced by dynamization (vigorous agitation or trituration) is a crucial factor that facilitates these phenomena. After dynamization is completed, the transferred charges revert to their previous positions but, due to dielectric hysteresis, they leave a remnant polarization on the aqueous nanostructures or sugar molecules' nanoscale domains. This causes some nanoscale domains of the aqueous nanostructures or sugar molecules to obtain the original substance molecules' dipole orientations. A highly diluted HM may have no molecule of the original substance, but the aqueous nanostructures or sugar molecules may contain the original substance's dipole orientations. Therefore, HMs can precisely aim at the biological targets of the original substance molecules and electrostatically interact with them as mild stimuli.


Author(s):  
T. Hayat ◽  
Zobia Kainat ◽  
Sohail A. Khan ◽  
A. Alsaedi

The aim of this articles is to investigate the entropy optimization in unsteady MHD flow Darcy-Forchheimer nanofluids towards a stretchable sheet. The surface we tend to think about is porous and stretchy under acceleration. Flow occurs due to the stretching of the surface. Four distinct types of aqueous nanostructures are taken in this examination where copper oxide ( ), copper ( ), titanium dioxide ( ) and aluminum oxide ( ) are the nanoparticles. Irreversibility analysis are discussed through second law of thermodynamics. The expression of energy is mathematically designed and discussed according to heat generation / absorption, dissipation, thermal radiation, and joule heating. The nonlinear PDE (partial differential conditions) is first changed to ODE (normal differential conditions) through appropriate similarity variables. Here we used the numerically embedded solution technique to develop a numerical result for the obtained nonlinear flow expression. Influence of various flow parameter velocity temperature distribution and entropy generation are discussed. Reduction occurs in velocity profile for larger porosity and magnetic parameters. An enhancement in entropy generation and temperature distribution is seen for Brinkman number. An opposite effect is noticed in velocity and temperature through solid volume friction.


2021 ◽  
Author(s):  
T Hayat ◽  
Zobia Kainat ◽  
A Alsaedi ◽  
Sohail A. Khan

Abstract The aim of this articles is to investigate the entropy optimization in unsteady MHD flow Darcy-Forchheimer nanofluids towards a stretchable sheet. The surface we tend to think about is porous and stretchy under acceleration. Flow occurs due to the stretching of the surface. Four distinct types of aqueous nanostructures are taken in this examination where copper oxide (CuO), copper (Cu), titanium dioxide (TiO2) and aluminum oxide (Al2O3) are the nanoparticles. Irreversibility analysis are discussed through second law of thermodynamics. The expression of energy is mathematically designed and discussed according to heat generation / absorption, dissipation, thermal radiation, and joule heating. The nonlinear PDE (partial differential conditions) is first changed to ODE (normal differential conditions) through the use of appropriate similarity variables. Here we used the numerically embedded solution technique to develop a numerical result for the obtained nonlinear flow expression. Influence of various flow parameter velocity temperature distribution and entropy generation are discussed. Reduction occurs in velocity profile for larger porosity and magnetic parameters. An enhancement in entropy generation and temperature distribution is seen for Brinkman number. An opposite effect is noticed in velocity and temperature through solid volume friction.


2009 ◽  
Vol 1 (2) ◽  
pp. 81-90 ◽  
Author(s):  
Luc Montagnier ◽  
Jamal Aïssa ◽  
Stéphane Ferris ◽  
Jean-Luc Montagnier ◽  
Claude Lavalléee

Sign in / Sign up

Export Citation Format

Share Document