Interdisciplinary Sciences Computational Life Sciences
Latest Publications


TOTAL DOCUMENTS

677
(FIVE YEARS 173)

H-INDEX

19
(FIVE YEARS 6)

Published By Springer-Verlag

1867-1462, 1913-2751

Author(s):  
Yan Wang ◽  
Jie Gao ◽  
Chenxu Xuan ◽  
Tianhao Guan ◽  
Yujie Wang ◽  
...  

Author(s):  
Xuting Zhang ◽  
Fengxu Wu ◽  
Nan Yang ◽  
Xiaohui Zhan ◽  
Jianbo Liao ◽  
...  

AbstractAt the initial stage of drug discovery, identifying novel targets with maximal efficacy and minimal side effects can improve the success rate and portfolio value of drug discovery projects while simultaneously reducing cycle time and cost. However, harnessing the full potential of big data to narrow the range of plausible targets through existing computational methods remains a key issue in this field. This paper reviews two categories of in silico methods—comparative genomics and network-based methods—for finding potential therapeutic targets among cellular functions based on understanding their related biological processes. In addition to describing the principles, databases, software, and applications, we discuss some recent studies and prospects of the methods. While comparative genomics is mostly applied to infectious diseases, network-based methods can be applied to infectious and non-infectious diseases. Nonetheless, the methods often complement each other in their advantages and disadvantages. The information reported here guides toward improving the application of big data-driven computational methods for therapeutic target discovery. Graphical abstract


Author(s):  
Yan-Ting Jin ◽  
Cong Ma ◽  
Xin Wang ◽  
Shu-Xuan Wang ◽  
Kai-Yue Zhang ◽  
...  

AbstractIn 2002, our research group observed a gene clustering pattern based on the base frequency of A versus T at the second codon position in the genome of Vibrio cholera and found that the functional category distribution of genes in the two clusters was different. With the availability of a large number of sequenced genomes, we performed a systematic investigation of A2–T2 distribution and found that 2694 out of 2764 prokaryotic genomes have an optimal clustering number of two, indicating a consistent pattern. Analysis of the functional categories of the coding genes in each cluster in 1483 prokaryotic genomes indicated, that 99.33% of the genomes exhibited a significant difference (p < 0.01) in function distribution between the two clusters. Specifically, functional category P was overrepresented in the small cluster of 98.65% of genomes, whereas categories J, K, and L were overrepresented in the larger cluster of over 98.52% of genomes. Lineage analysis uncovered that these preferences appear consistently across all phyla. Overall, our work revealed an almost universal clustering pattern based on the relative frequency of A2 versus T2 and its role in functional category preference. These findings will promote the understanding of the rationality of theoretical prediction of functional classes of genes from their nucleotide sequences and how protein function is determined by DNA sequence. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document