behavioural classification
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jeanne Clermont ◽  
Sasha Woodward-Gagné ◽  
Dominique Berteaux

Abstract Background Biologging now allows detailed recording of animal movement, thus informing behavioural ecology in ways unthinkable just a few years ago. In particular, combining GPS and accelerometry allows spatially explicit tracking of various behaviours, including predation events in large terrestrial mammalian predators. Specifically, identification of location clusters resulting from prey handling allows efficient location of killing events. For small predators with short prey handling times, however, identifying predation events through technology remains unresolved. We propose that a promising avenue emerges when specific foraging behaviours generate diagnostic acceleration patterns. One such example is the caching behaviour of the arctic fox (Vulpes lagopus), an active hunting predator strongly relying on food storage when living in proximity to bird colonies. Methods We equipped 16 Arctic foxes from Bylot Island (Nunavut, Canada) with GPS and accelerometers, yielding 23 fox-summers of movement data. Accelerometers recorded tri-axial acceleration at 50 Hz while we obtained a sample of simultaneous video recordings of fox behaviour. Multiple supervised machine learning algorithms were tested to classify accelerometry data into 4 behaviours: motionless, running, walking and digging, the latter being associated with food caching. Finally, we assessed the spatio-temporal concordance of fox digging and greater snow goose (Anser caerulescens antlanticus) nesting, to test the ecological relevance of our behavioural classification in a well-known study system dominated by top-down trophic interactions. Results The random forest model yielded the best behavioural classification, with accuracies for each behaviour over 96%. Overall, arctic foxes spent 49% of the time motionless, 34% running, 9% walking, and 8% digging. The probability of digging increased with goose nest density and this result held during both goose egg incubation and brooding periods. Conclusions Accelerometry combined with GPS allowed us to track across space and time a critical foraging behaviour from a small active hunting predator, informing on spatio-temporal distribution of predation risk in an Arctic vertebrate community. Our study opens new possibilities for assessing the foraging behaviour of terrestrial predators, a key step to disentangle the subtle mechanisms structuring many predator–prey interactions and trophic networks.


2019 ◽  
Vol 512 ◽  
pp. 22-30 ◽  
Author(s):  
J.L. Hounslow ◽  
L.R. Brewster ◽  
K.O. Lear ◽  
T.L. Guttridge ◽  
R. Daly ◽  
...  

2018 ◽  
Vol 221 (23) ◽  
pp. jeb184085 ◽  
Author(s):  
Jack Tatler ◽  
Phillip Cassey ◽  
Thomas A. A. Prowse

2015 ◽  
Vol 111 ◽  
pp. 18-28 ◽  
Author(s):  
Ritaban Dutta ◽  
Daniel Smith ◽  
Richard Rawnsley ◽  
Greg Bishop-Hurley ◽  
James Hills ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88609 ◽  
Author(s):  
Owen R. Bidder ◽  
Hamish A. Campbell ◽  
Agustina Gómez-Laich ◽  
Patricia Urgé ◽  
James Walker ◽  
...  

2013 ◽  
Vol 216 (24) ◽  
pp. 4501-4506 ◽  
Author(s):  
H. A. Campbell ◽  
L. Gao ◽  
O. R. Bidder ◽  
J. Hunter ◽  
C. E. Franklin

2013 ◽  
Vol 13 (9) ◽  
pp. 995-995
Author(s):  
C. Hills ◽  
R. Pancaroglu ◽  
E. Alonso-Prieto ◽  
J. Davies-Thompson ◽  
I. Oruc ◽  
...  

2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Jamey Kain ◽  
Chris Stokes ◽  
Quentin Gaudry ◽  
Xiangzhi Song ◽  
James Foley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document