prey handling
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 15)

H-INDEX

20
(FIVE YEARS 1)

Author(s):  
Maria Edvânia Neves Barros ◽  
Francisco Wesller Batista Da Silva ◽  
Eduardo Pereira De Sousa Neto ◽  
Manoel Carlos Da Rocha Bisneto ◽  
Débora Barbosa De Lima ◽  
...  

The suppression of pest populations by a predator depends on two basic components of the predator-prey interaction: the functional and the numerical responses of the predator. Such responses can be affected by exposure to acaricides. In the present study, the effects of acaricides (abamectin, azadirachtin, fenpyroximate, and chlorfenapyr) on the functional and numerical responses of the predatory mite, Amblyseius largoensis (Acari: Phytoseiidae) an important natural enemy of the pest mite, Raoiella indica (Acari: Tenuipalpidae), were investigated. The exposure of A. largoensis to acaricides occurred through contact with a surface contaminated with dried acaricide residue. Subsequently, A. largoensis exhibited a type II functional response, which was not altered by exposure of any acaricides. However, exposure to abamectin resulted in a decrease in the average mean numbers of prey consumed by a predator. Exposure to acaricides increased prey handling time by 67%, 25%, 38%, and 35% for abamectin, azadirachtin, fenpyroximate, and chlorfenapyr, respectively. Exposure to abamectin reduced the attack rate of A. largoensis by 52%. The numerical response of A. largoensis was only affected by exposure to abamectin, where just 60% of the females oviposited, and regardless of the prey density, the average mean numbers of eggs/female/day was always less than 0.4. The food conversion efficiency into biomass of A. largoensis eggs decreased with increasing prey density, and this trend was not altered by exposure to any acaricides. However, exposure to abamectin drastically compromised the oviposition of A. largoensis, showing no increase in egg production with increasing prey density.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jeanne Clermont ◽  
Sasha Woodward-Gagné ◽  
Dominique Berteaux

Abstract Background Biologging now allows detailed recording of animal movement, thus informing behavioural ecology in ways unthinkable just a few years ago. In particular, combining GPS and accelerometry allows spatially explicit tracking of various behaviours, including predation events in large terrestrial mammalian predators. Specifically, identification of location clusters resulting from prey handling allows efficient location of killing events. For small predators with short prey handling times, however, identifying predation events through technology remains unresolved. We propose that a promising avenue emerges when specific foraging behaviours generate diagnostic acceleration patterns. One such example is the caching behaviour of the arctic fox (Vulpes lagopus), an active hunting predator strongly relying on food storage when living in proximity to bird colonies. Methods We equipped 16 Arctic foxes from Bylot Island (Nunavut, Canada) with GPS and accelerometers, yielding 23 fox-summers of movement data. Accelerometers recorded tri-axial acceleration at 50 Hz while we obtained a sample of simultaneous video recordings of fox behaviour. Multiple supervised machine learning algorithms were tested to classify accelerometry data into 4 behaviours: motionless, running, walking and digging, the latter being associated with food caching. Finally, we assessed the spatio-temporal concordance of fox digging and greater snow goose (Anser caerulescens antlanticus) nesting, to test the ecological relevance of our behavioural classification in a well-known study system dominated by top-down trophic interactions. Results The random forest model yielded the best behavioural classification, with accuracies for each behaviour over 96%. Overall, arctic foxes spent 49% of the time motionless, 34% running, 9% walking, and 8% digging. The probability of digging increased with goose nest density and this result held during both goose egg incubation and brooding periods. Conclusions Accelerometry combined with GPS allowed us to track across space and time a critical foraging behaviour from a small active hunting predator, informing on spatio-temporal distribution of predation risk in an Arctic vertebrate community. Our study opens new possibilities for assessing the foraging behaviour of terrestrial predators, a key step to disentangle the subtle mechanisms structuring many predator–prey interactions and trophic networks.


2021 ◽  
Author(s):  
Andréanne Beardsell ◽  
Dominique Gravel ◽  
Jeanne Clermont ◽  
Dominique Berteaux ◽  
Gilles Gauthier ◽  
...  

Prey handling processes are considered a key driver of short-term positive indirect effects between prey sharing the same predator. However, a growing body of research indicates that predators are rarely limited by such processes in the wild. Density-dependent changes in predator foraging behavior can also generate positive indirect effects but they are rarely included as explicit functions of prey densities in functional response models. With the aim of untangling proximate drivers of species interactions in natural communities and improve our ability to quantify interaction strength, we extended the Holling multi-species model by including density-dependent changes in predator foraging behavior. Our model, based on species traits and behavior, was inspired by the vertebrate community of the arctic tundra, where the main predator (the arctic fox) is an active forager feeding primarily on cyclic small rodent (lemming) populations and eggs of various tundra-nesting bird species. Short-term positive indirect effects of lemmings on birds have been documented over the circumpolar Arctic but the underlying proximate mechanisms remain poorly known. We used a unique data set, containing high-frequency GPS tracking, accelerometer, behavioral, and experimental data to parameterize the multi-species model, and a 15-year time series of prey densities and bird nesting success to evaluate interaction strength between species. Our results showed that: (i) prey handling processes play a minor role in our system and (ii) density-dependent changes in predator foraging behavior can be the proximate drivers of a predominant predator-mediated interaction observed in the arctic tundra. Mechanisms outlined in our study have been little studied and may play a significant role in natural systems. We hope that our study will provide a useful starting point to build mechanistic models of predation, and we think that our approach could conceivably be applied to a broad range of food webs.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 590
Author(s):  
Nicholas J. Youngman ◽  
Joshua Llinas ◽  
Bryan G. Fry

Some Australian elapids possess potently procoagulant coagulotoxic venoms which activate the zymogen prothrombin into the functional enzyme thrombin. Although the activity of Australian elapid prothrombin-activators has been heavily investigated with respect to the mammalian, and in particular, human clotting cascades, very few studies have investigated the activity of their venom upon reptile plasmas. This is despite lizards representing both the primary diet of most Australian elapids and also representing natural predators. This study investigated the procoagulant actions of a diverse range of Australian elapid species upon plasma from known prey species within the genera Tiliqua (blue tongue skinks) as well as known predator species within the genera Varanus (monitor lizards). In addition to identifying significant variation in the natural responses of the coagulation cascade between species from the genera Tiliqua and Varanus relative to each other, as well as other vertebrate lineages, notable differences in venom activity were also observed. Within the genus Tiliqua, both T. rugosa and T. scincoides plasma displayed significant resistance to the procoagulant activity of Pseudechis porphyriacus venom, despite being susceptible to all other procoagulant elapid venoms. These results indicate that T. rugosa and T. scincoides have evolved resistance within their plasma to the coagulotoxic venom activity of the sympatric species P. porphyriacus. Other venoms were able to activate Tiliqua prothrombin, which suggests that the lessened activity of P. porphyriacus venom is not due to modifications of the prothrombin and may instead be due to a serum factor that specifically binds to P. porphyriacus toxins, as has been previously seen for squirrels resistant to rattlesnake venom. In contrast, none of the predatory lizards studied (Varanus giganteus, V. mertensi and V. varius) demonstrated resistance to the venom. This suggests that the mechanical protection afforded by thick osteodermic scales, and prey handling behaviour, removes a selection pressure for the evolution of resistance in these large predatory lizards. These results therefore reveal differential interactions between venoms of snakes with sympatric lizards that are on opposite sides of the predator–prey arms race.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11313
Author(s):  
Blaire Van Valkenburgh ◽  
Paula A. White

Determining the incidence and causes of craniodental damage in wild carnivores is often constrained by limited access to specimens with associated ecological data, such as prey type and abundance. We assessed dental condition and cranial injuries in lion, leopard, and spotted hyena in relation to prey and predator populations in Zambia’s Luangwa Valley, where large prey are more abundant and lion and leopard more numerous, and the Greater Kafue Ecosystem, where smaller prey species are more prevalent and lion and leopard less common. In Luangwa, lions had significantly higher rates of tooth fracture, and blunt trauma injuries attributable to prey-handling, compared to Kafue lions. In contrast, leopards in both regions had similar rates of tooth wear and breakage. Overall, lions showed a significantly higher tooth fracture rate than leopards on a per tooth basis. Spotted hyenas had the highest rates of tooth wear and fracture among all three carnivores, and greatly exceeded previously recorded rates based on historical samples. Despite larger numbers of lion and leopard in Luangwa, there was no difference in incidence of intraspecific injuries between regions. These results are consistent with a greater abundance of large prey species, especially buffalo, in the diets of Luangwa lions, and previous work showing a reliance on smaller prey species in Kafue throughout the large carnivore guild.


2021 ◽  
Author(s):  
Sei Suzuki ◽  
Anders Andersen ◽  
Thomas Kiørboe

ABSTRACTHeterotrophic nanoflagellates are the main consumers of bacteria and picophytoplankton in the ocean. In their micro-scale world, viscosity impedes predator-prey contact, and the mechanisms that allow flagellates to daily clear a volume of water for prey corresponding to 106 times their own volume is unclear. It is also unclear what limits observed maximum ingestion rates of about 104 bacterial prey per day. We used high-speed video-microscopy to describe feeding flows, flagellum kinematics, and prey searching, capture, and handling in four species with different foraging strategies. In three species, prey-handling times limit ingestion rates and account well for their reported maximum values. Similarly, observed feeding flows match reported clearance rates. Simple point-force models allowed us to estimate the forces required to generate the feeding flows, between 4-13 pN, and consistent with the force produced by the hairy (hispid) flagellum, as estimated using resistive force theory. Hispid flagella can produce a force that is much higher than the force produced by a naked flagellum with similar kinematics, and the hairy flagellum is therefore key to foraging in most nanoflagellates. Our findings provide a mechanistic underpinning of observed functional responses of prey ingestion rates in nanoflagellates.


2021 ◽  
Vol 29 (1) ◽  
pp. 1-12
Author(s):  
Molly Kelly ◽  
Linda Schroeder ◽  
Daniel L. Mullendore ◽  
Benjamin F. Dattilo ◽  
Winfried S. Peters

Olividae are marine gastropods living as predators or scavengers on soft sediments. The complex prey handling behaviour of large predatory species includes the storage of food in a pouch formed temporarily by bending and contraction of the posterior foot. Such metapodial pouches had been observed only in Olividae that lack an operculum, prompting the hypothesis that the folding of the metapodium into a pouch biomechanically required the absence of the operculum. Here we report metapodial pouch formation in an operculate olivid, Callianax biplicata (formerly Olivella biplicata). Since the operculum is too small to close the shell aperture in mature C. biplicata, a protective function seems unlikely. The operculum may rather serve as an exoskeletal point for muscle attachment, but may also represent a ‘vestigial organ’ in the process of evolutionary reduction, or an ontogenetic remnant functional at early life stages but not at maturity. Consequently, our observations refute the notion that only inoperculate olivids can form pouches, but not necessarily the idea that the ability to form a metapodial pouch evolved in parallel with operculum reduction


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
William G Ryerson ◽  
Cassidy Goulet
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document