Driver behavioural classification from trajectory data

Author(s):  
M. Rigolli ◽  
Q. Williams ◽  
M.J. Gooding ◽  
M. Brady
CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zuyao Zhang ◽  
Li Tang ◽  
Yifeng Wang ◽  
Xuejun Zhang

Informatica ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Pengfei HAO ◽  
Chunlong YAO ◽  
Qingbin MENG ◽  
Xiaoqiang YU ◽  
Xu LI

2020 ◽  
Author(s):  
Jiawei Peng ◽  
Yu Xie ◽  
Deping Hu ◽  
Zhenggang Lan

The system-plus-bath model is an important tool to understand nonadiabatic dynamics for large molecular systems. The understanding of the collective motion of a huge number of bath modes is essential to reveal their key roles in the overall dynamics. We apply the principal component analysis (PCA) to investigate the bath motion based on the massive data generated from the MM-SQC (symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian) nonadiabatic dynamics of the excited-state energy transfer dynamics of Frenkel-exciton model. The PCA method clearly clarifies that two types of bath modes, which either display the strong vibronic couplings or have the frequencies close to electronic transition, are very important to the nonadiabatic dynamics. These observations are fully consistent with the physical insights. This conclusion is obtained purely based on the PCA understanding of the trajectory data, without the large involvement of pre-defined physical knowledge. The results show that the PCA approach, one of the simplest unsupervised machine learning methods, is very powerful to analyze the complicated nonadiabatic dynamics in condensed phase involving many degrees of freedom.


2013 ◽  
Vol 33 (6) ◽  
pp. 1604-1607
Author(s):  
Guang YANG ◽  
Lei ZHANG ◽  
Fan LI

Author(s):  
Xing Xu ◽  
Minglei Li ◽  
Feng Wang ◽  
Ju Xie ◽  
Xiaohan Wu ◽  
...  

A human-like trajectory could give a safe and comfortable feeling for the occupants in an autonomous vehicle especially in corners. The research of this paper focuses on planning a human-like trajectory along a section road on a test track using optimal control method that could reflect natural driving behaviour considering the sense of natural and comfortable for the passengers, which could improve the acceptability of driverless vehicles in the future. A mass point vehicle dynamic model is modelled in the curvilinear coordinate system, then an optimal trajectory is generated by using an optimal control method. The optimal control problem is formulated and then solved by using the Matlab tool GPOPS-II. Trials are carried out on a test track, and the tested data are collected and processed, then the trajectory data in different corners are obtained. Different TLCs calculations are derived and applied to different track sections. After that, the human driver’s trajectories and the optimal line are compared to see the correlation using TLC methods. The results show that the optimal trajectory shows a similar trend with human’s trajectories to some extent when driving through a corner although it is not so perfectly aligned with the tested trajectories, which could conform with people’s driving intuition and improve the occupants’ comfort when driving in a corner. This could improve the acceptability of AVs in the automotive market in the future. The driver tends to move to the outside of the lane gradually after passing the apex when driving in corners on the road with hard-lines on both sides.


2021 ◽  
Author(s):  
Chao Chen ◽  
Daqing Zhang ◽  
Yasha Wang ◽  
Hongyu Huang

2021 ◽  
pp. 1-11
Author(s):  
Senjie Wang ◽  
Zhengwei He

Abstract Trajectory prediction is an important support for analysing the vessel motion behaviour, judging the vessel traffic risk and collision avoidance route planning of intelligent ships. To improve the accuracy of trajectory prediction in complex situations, a Generative Adversarial Network with Attention Module and Interaction Module (GAN-AI) is proposed to predict the trajectories of multiple vessels. Firstly, GAN-AI can infer all vessels’ future trajectories simultaneously when in the same local area. Secondly, GAN-AI is based on adversarial architecture and trained by competition for better convergence. Thirdly, an interactive module is designed to extract the group motion features of the multiple vessels, to achieve better performance at the ship encounter situations. GAN-AI has been tested on the historical trajectory data of Zhoushan port in China; the experimental results show that the GAN-AI model improves the prediction accuracy by 20%, 24% and 72% compared with sequence to sequence (seq2seq), plain GAN, and the Kalman model. It is of great significance to improve the safety management level of the vessel traffic service system and judge the degree of ship traffic risk.


Sign in / Sign up

Export Citation Format

Share Document