transfer matrix spectrum
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Jean Michel Maillet ◽  
Giuliano Niccoli

We describe the extension, beyond fundamental representations of the Yang-Baxter algebra, of our new construction of separation of variables bases for quantum integrable lattice models. The key idea underlying our approach is to use the commuting conserved charges of the quantum integrable models to generate bases in which their spectral problem is separated, i.e. in which the wave functions are factorized in terms of specific solutions of a functional equation. For the so-called “non-fundamental” models we construct two different types of SoV bases. The first is given from the fundamental quantum Lax operator having isomorphic auxiliary and quantum spaces and that can be obtained by fusion of the original quantum Lax operator. The construction essentially follows the one we used previously for fundamental models and allows us to derive the simplicity and diagonalizability of the transfer matrix spectrum. Then, starting from the original quantum Lax operator and using the full tower of the fused transfer matrices, we introduce a second type of SoV bases for which the proof of the separation of the transfer matrix spectrum is naturally derived. We show that, under some special choice, this second type of SoV bases coincides with the one associated to Sklyanin’s approach. Moreover, we derive the finite difference type (quantum spectral curve) functional equation and the set of its solutions defining the complete transfer matrix spectrum. This is explicitly implemented for the integrable quantum models associated to the higher spin representations of the general quasi-periodic Y(gl_{2})Y(gl2) Yang-Baxter algebra. Our SoV approach also leads to the construction of a QQ-operator in terms of the fused transfer matrices. Finally, we show that the QQ-operator family can be equivalently used as the family of commuting conserved charges enabling to construct our SoV bases.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Jean Michel Maillet ◽  
Giuliano Niccoli

We apply our new approach of quantum Separation of Variables (SoV) to the complete characterization of the transfer matrix spectrum of quantum integrable lattice models associated to \bm{gl_n}𝐠𝐥𝐧-invariant \bm{R}𝐑-matrices in the fundamental representations. We consider lattices with \bm{N}𝐍-sites and general quasi-periodic boundary conditions associated to an arbitrary twist matrix \bm{K}𝐊 having simple spectrum (but not necessarily diagonalizable). In our approach the SoV basis is constructed in an universal manner starting from the direct use of the conserved charges of the models, e.g. from the commuting family of transfer matrices. Using the integrable structure of the models, incarnated in the hierarchy of transfer matrices fusion relations, we prove that our SoV basis indeed separates the spectrum of the corresponding transfer matrices. Moreover, the combined use of the fusion rules, of the known analytic properties of the transfer matrices and of the SoV basis allows us to obtain the complete characterization of the transfer matrix spectrum and to prove its simplicity. Any transfer matrix eigenvalue is completely characterized as a solution of a so-called quantum spectral curve equation that we obtain as a difference functional equation of order \bm{n}𝐧. Namely, any eigenvalue satisfies this equation and any solution of this equation having prescribed properties that we give leads to an eigenvalue. We construct the associated eigenvector, unique up to normalization, of the transfer matrices by computing its decomposition on the SoV basis that is of a factorized form written in terms of the powers of the corresponding eigenvalues. Finally, if the twist matrix \bm{K}𝐊 is diagonalizable with simple spectrum we prove that the transfer matrix is also diagonalizable with simple spectrum. In that case, we give a construction of the Baxter \bm{Q}𝐐-operator and show that it satisfies a \bm{T}𝐓-\bm{Q}𝐐 equation of order \bm{n}𝐧, the quantum spectral curve equation, involving the hierarchy of the fused transfer matrices.


2018 ◽  
Vol 5 (3) ◽  
Author(s):  
Jean Michel Maillet ◽  
Giuliano Niccoli ◽  
Baptiste Pezelier

This article is a direct continuation of where we begun the study of the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazhanov-Stroganov Lax operator. There we addressed this problem for the case where one of the KK-matrices describing the boundary conditions is triangular. In the present article we consider the most general integrable boundary conditions, namely the most general boundary KK-matrices satisfying the reflection equation. The spectral analysis is developed by implementing the method of Separation of Variables (SoV). We first design a suitable gauge transformation that enable us to put into correspondence the spectral problem for the most general boundary conditions with another one having one boundary KK-matrix in a triangular form. In these settings the SoV resolution can be obtained along an extension of the method described in . The transfer matrix spectrum is then completely characterized in terms of the set of solutions to a discrete system of polynomial equations in a given class of functions and equivalently as the set of solutions to an analogue of Baxter’s T-Q functional equation. We further describe scalar product properties of the separate states including eigenstates of the transfer matrix.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Jean Michel Maillet ◽  
Giuliano Niccoli ◽  
Baptiste Pezelier

We study the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. The results apply as well to the spectral analysis of the lattice sine-Gordon model with integrable open boundary conditions. This spectral analysis is developed by implementing the method of separation of variables (SoV). The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations in a given class of functions. Moreover, we prove an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation and rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form. In order to explain our method in a simple case, the present paper is restricted to representations containing one constraint on the boundary parameters and on the parameters of the Bazanov-Stroganov Lax operator. In a next article, some more technical tools (like Baxter’s gauge transformations) will be introduced to extend our approach to general integrable boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document