reflection algebra
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 111 (4) ◽  
Author(s):  
Anastasia Doikou ◽  
Agata Smoktunowicz

AbstractConnections between set-theoretic Yang–Baxter and reflection equations and quantum integrable systems are investigated. We show that set-theoretic R-matrices are expressed as twists of known solutions. We then focus on reflection and twisted algebras and we derive the associated defining algebra relations for R-matrices being Baxterized solutions of the A-type Hecke algebra $${\mathcal {H}}_N(q=1)$$ H N ( q = 1 ) . We show in the case of the reflection algebra that there exists a “boundary” finite sub-algebra for some special choice of “boundary” elements of the B-type Hecke algebra $${\mathcal {B}}_N(q=1, Q)$$ B N ( q = 1 , Q ) . We also show the key proposition that the associated double row transfer matrix is essentially expressed in terms of the elements of the B-type Hecke algebra. This is one of the fundamental results of this investigation together with the proof of the duality between the boundary finite subalgebra and the B-type Hecke algebra. These are universal statements that largely generalize previous relevant findings and also allow the investigation of the symmetries of the double row transfer matrix.


2019 ◽  
Vol 52 (35) ◽  
pp. 35LT01 ◽  
Author(s):  
Nicolas Crampé ◽  
Eric Ragoucy ◽  
Luc Vinet ◽  
Alexei Zhedanov
Keyword(s):  

2018 ◽  
Vol 5 (3) ◽  
Author(s):  
Jean Michel Maillet ◽  
Giuliano Niccoli ◽  
Baptiste Pezelier

This article is a direct continuation of where we begun the study of the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazhanov-Stroganov Lax operator. There we addressed this problem for the case where one of the KK-matrices describing the boundary conditions is triangular. In the present article we consider the most general integrable boundary conditions, namely the most general boundary KK-matrices satisfying the reflection equation. The spectral analysis is developed by implementing the method of Separation of Variables (SoV). We first design a suitable gauge transformation that enable us to put into correspondence the spectral problem for the most general boundary conditions with another one having one boundary KK-matrix in a triangular form. In these settings the SoV resolution can be obtained along an extension of the method described in . The transfer matrix spectrum is then completely characterized in terms of the set of solutions to a discrete system of polynomial equations in a given class of functions and equivalently as the set of solutions to an analogue of Baxter’s T-Q functional equation. We further describe scalar product properties of the separate states including eigenstates of the transfer matrix.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Jean Michel Maillet ◽  
Giuliano Niccoli ◽  
Baptiste Pezelier

We study the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. The results apply as well to the spectral analysis of the lattice sine-Gordon model with integrable open boundary conditions. This spectral analysis is developed by implementing the method of separation of variables (SoV). The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations in a given class of functions. Moreover, we prove an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation and rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form. In order to explain our method in a simple case, the present paper is restricted to representations containing one constraint on the boundary parameters and on the parameters of the Bazanov-Stroganov Lax operator. In a next article, some more technical tools (like Baxter’s gauge transformations) will be introduced to extend our approach to general integrable boundary conditions.


2014 ◽  
Vol 886 ◽  
pp. 1003-1028 ◽  
Author(s):  
W. Galleas ◽  
J. Lamers

Sign in / Sign up

Export Citation Format

Share Document