transcutaneous stimulation
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 22)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Nishant Verma ◽  
Robert D. Graham ◽  
Jonah Mudge ◽  
James K. Trevathan ◽  
Manfred Franke ◽  
...  

Minimally invasive neuromodulation technologies seek to marry the neural selectivity of implantable devices with the low-cost and non-invasive nature of transcutaneous electrical stimulation (TES). The Injectrode® is a needle-delivered electrode that is injected onto neural structures under image guidance. Power is then transcutaneously delivered to the Injectrode using surface electrodes. The Injectrode serves as a low-impedance conduit to guide current to the deep on-target nerve, reducing activation thresholds by an order of magnitude compared to using only surface stimulation electrodes. To minimize off-target recruitment of cutaneous fibers, the energy transfer efficiency from the surface electrodes to the Injectrode must be optimized. TES energy is transferred to the Injectrode through both capacitive and resistive mechanisms. Electrostatic finite element models generally used in TES research consider only the resistive means of energy transfer by defining tissue conductivities. Here, we present an electroquasistatic model, taking into consideration both the conductivity and permittivity of tissue, to understand transcutaneous power delivery to the Injectrode. The model was validated with measurements taken from (n = 4) swine cadavers. We used the validated model to investigate system and anatomic parameters that influence the coupling efficiency of the Injectrode energy delivery system. Our work suggests the relevance of electroquasistatic models to account for capacitive charge transfer mechanisms when studying TES, particularly when high-frequency voltage components are present, such as those used for voltage-controlled pulses and sinusoidal nerve blocks.


2021 ◽  
Author(s):  
Nishant Verma ◽  
Robert D Graham ◽  
Jonah Mudge ◽  
James K Trevathan ◽  
Manfred Franke ◽  
...  

AbstractMinimally invasive neuromodulation technologies seek to marry the neural selectivity of implantable devices with the low-cost and non-invasive nature of transcutaneous electrical stimulation (TES). The Injectrode® is a needle-delivered electrode that is injected onto neural structures under image guidance. Power is then transcutaneously delivered to the Injectrode using surface electrodes. The Injectrode serves as a low-impedance conduit to guide current to the deep on-target nerve, reducing activation thresholds by an order of magnitude compared to using only surface stimulation electrodes. To minimize off-target recruitment of cutaneous fibers, the energy transfer efficiency from the surface electrodes to the Injectrode must be optimized. TES energy is transferred to the Injectrode through both capacitive and resistive mechanisms. Electrostatic finite element models generally used in TES research consider only the resistive means of energy transfer by defining tissue conductivities. Here, we present an electroquasistatic model, taking into consideration both the conductivity and permittivity of tissue, to understand transcutaneous power delivery to the Injectrode. The model was validated with measurements taken from (n=4) swine cadavers. We used the validated model to investigate system and anatomic parameters that influence the coupling efficiency of the Injectrode energy delivery system. Our work suggests the relevance of electroquasistatic models to account for capacitive charge transfer mechanisms when studying TES, particularly when high-frequency voltage components are present, such as those used for voltage-controlled pulses and sinusoidal nerve blocks.


2021 ◽  
Author(s):  
Vishal Thakkar ◽  
Zoe A Richardson ◽  
Annie Dang ◽  
Tracy Centanni

Expert reading acquisition is marked by fluent, effortless decoding and adequate comprehension skills and is required for modern daily life. In spite of its importance, many individuals struggle with reading comprehension even when decoding skills are adequate. Unfortunately, effective reading comprehension interventions are limited, especially for adults. A growing body of research suggests that non-invasive transcutaneous stimulation of the auricular vagus nerve (taVNS) may drive neural plasticity for low-level reading skills such as speech sound perception and letter-sound learning, but it is unknown whether taVNS can improve higher level skills as well. Thus, the current study was designed to evaluate whether taVNS paired with passage reading can improve reading comprehension performance. Twenty-four typically developing young adults were recruited and screened for baseline reading and working memory skills. Participants received either sham or active taVNS while reading short passages out loud. Immediately following each passage, participants answered a series of test questions that required either direct recall of passage details or more complete comprehension of the passage content. While taVNS did not improve the mechanics of reading (e.g., reading rate or accuracy), there was a significant benefit of active taVNS on test questions. This effect was driven by significant improvement on accuracy for memory questions while there was no effect of taVNS on comprehension question accuracy. These findings suggest that taVNS may be beneficial for enhancing memory, but its efficacy may be limited in higher cognitive domains.


2021 ◽  
Author(s):  
Rahul Sachdeva ◽  
Tom E. Nightingale ◽  
Kiran Pawar ◽  
Tamila Kalimullina ◽  
Adam Mesa ◽  
...  

AbstractSpinal cord injury (SCI) leads to severe impairment in cardiovascular control, commonly manifested as a rapid, uncontrolled rise in blood pressure triggered by peripheral stimuli—a condition called autonomic dysreflexia. The objective was to demonstrate the translational potential of noninvasive transcutaneous stimulation (TCS) in mitigating autonomic dysreflexia following SCI, using pre-clinical evidence and a clinical case report. In rats with SCI, we show that TCS not only prevents the instigation of autonomic dysreflexia, but also mitigates its severity when delivered during an already-triggered episode. Furthermore, when TCS was delivered as a multisession therapy for 6 weeks post-SCI, the severity of autonomic dysreflexia was significantly reduced when tested in the absence of concurrent TCS. This treatment effect persisted for at least 1 week after the end of therapy. More importantly, we demonstrate the clinical applicability of TCS in treatment of autonomic dysreflexia in an individual with cervical, motor-complete, chronic SCI. We anticipate that TCS will offer significant therapeutic advantages, such as obviating the need for surgery resulting in reduced risk and medical expenses. Furthermore, this study provides a framework for testing the potential of TCS in improving recovery of other autonomic functions such lower urinary tract, bowel, and sexual dysfunction following SCI.


Author(s):  
Narrendar RaviChandran ◽  
Mei Ying Teo ◽  
Kean Aw ◽  
Andrew McDaid

Sign in / Sign up

Export Citation Format

Share Document