twisted boundary condition
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Masahiro Ashie ◽  
Okuto Morikawa ◽  
Hiroshi Suzuki ◽  
Hiromasa Takaura

Abstract We present additional observations to previous studies on the infrared (IR) renormalon in $SU(N)$ QCD(adj.), the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions on $\mathbb{R}^3\times S^1$ with the $\mathbb{Z}_N$ twisted boundary condition. First, we show that, for arbitrary finite $N$, a logarithmic factor in the vacuum polarization of the “photon” (the gauge boson associated with the Cartan generators of $SU(N)$) disappears under the $S^1$ compactification. Since the IR renormalon is attributed to the presence of this logarithmic factor, it is concluded that there is no IR renormalon in this system with finite $N$. This result generalizes the observation made by Anber and Sulejmanpasic [J. High Energy Phys. 1501, 139 (2015)] for $N=2$ and $3$ to arbitrary finite $N$. Next, we point out that, although renormalon ambiguities do not appear through the Borel procedure in this system, an ambiguity appears in an alternative resummation procedure in which a resummed quantity is given by a momentum integration where the inverse of the vacuum polarization is included as the integrand. Such an ambiguity is caused by a simple zero at non-zero momentum of the vacuum polarization. Under the decompactification $R\to\infty$, where $R$ is the radius of the $S^1$, this ambiguity in the momentum integration smoothly reduces to the IR renormalon ambiguity in $\mathbb{R}^4$. We term this ambiguity in the momentum integration “renormalon precursor”. The emergence of the IR renormalon ambiguity in $\mathbb{R}^4$ under the decompactification can be naturally understood with this notion.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Toshiaki Fujimori ◽  
Etsuko Itou ◽  
Tatsuhiro Misumi ◽  
Muneto Nitta ◽  
Norisuke Sakai

2020 ◽  
Vol 61 (3) ◽  
pp. 033502
Author(s):  
Yi Qiao ◽  
Zhirong Xin ◽  
Xiaotian Xu ◽  
Kun Hao ◽  
Tao Yang ◽  
...  

2016 ◽  
Vol 31 (25) ◽  
pp. 1650150
Author(s):  
K.-I. Ishikawa ◽  
Y. Iwasaki ◽  
Yu Nakayama ◽  
T. Yoshie

We investigate the properties of quarks and gluons above the chiral phase transition temperature [Formula: see text], using the renormalization group (RG) improved gauge action and the Wilson quark action with two degenerate quarks mainly on a [Formula: see text] lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively [Formula: see text] center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a nontrivial [Formula: see text] center. This is in agreement with our lattice simulation of high temperature quantum chromodynamics (QCD). We further observe that the temporal propagator of massless quarks at extremely high temperature [Formula: see text] remarkably agrees with the temporal propagator of free quarks with the [Formula: see text] twisted boundary condition for [Formula: see text], but differs from that with the [Formula: see text] trivial boundary condition. As we increase the mass of quarks [Formula: see text], we find that the thermal ensemble continues to be dominated by the [Formula: see text] twisted gauge field configurations as long as [Formula: see text] and above that the [Formula: see text] trivial configurations come in. The transition is similar to what we found in the departure from the conformal region in the zero-temperature many-flavor conformal QCD on a finite lattice by increasing the mass of quarks.


Sign in / Sign up

Export Citation Format

Share Document