logarithmic factor
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 24)

H-INDEX

6
(FIVE YEARS 1)

Algorithmica ◽  
2021 ◽  
Author(s):  
Dan Alistarh ◽  
Giorgi Nadiradze ◽  
Amirmojtaba Sabour

AbstractWe consider the following dynamic load-balancing process: given an underlying graph G with n nodes, in each step $$t\ge 0$$ t ≥ 0 , a random edge is chosen, one unit of load is created, and placed at one of the endpoints. In the same step, assuming that loads are arbitrarily divisible, the two nodes balance their loads by averaging them. We are interested in the expected gap between the minimum and maximum loads at nodes as the process progresses, and its dependence on n and on the graph structure. Peres et al. (Random Struct Algorithms 47(4):760–775, 2015) studied the variant of this process, where the unit of load is placed in the least loaded endpoint of the chosen edge, and the averaging is not performed. In the case of dynamic load balancing on the cycle of length n the only known upper bound on the expected gap is of order $$\mathcal {O}( n \log n )$$ O ( n log n ) , following from the majorization argument due to the same work. In this paper, we leverage the power of averaging and provide an improved upper bound of $$\mathcal {O} ( \sqrt{n} \log n )$$ O ( n log n ) . We introduce a new potential analysis technique, which enables us to bound the difference in load between k-hop neighbors on the cycle, for any $$k \le n/2$$ k ≤ n / 2 . We complement this with a “gap covering” argument, which bounds the maximum value of the gap by bounding its value across all possible subsets of a certain structure, and recursively bounding the gaps within each subset. We also show that our analysis can be extended to the specific instance of Harary graphs. On the other hand, we prove that the expected second moment of the gap is lower bounded by $$\Omega (n)$$ Ω ( n ) . Additionally, we provide experimental evidence that our upper bound on the gap is tight up to a logarithmic factor.


Author(s):  
Othon Michail ◽  
George Skretas ◽  
Paul G. Spirakis

AbstractWe study here systems of distributed entities that can actively modify their communication network. This gives rise to distributed algorithms that apart from communication can also exploit network reconfiguration to carry out a given task. Also, the distributed task itself may now require a global reconfiguration from a given initial network $$G_s$$ G s to a target network $$G_f$$ G f from a desirable family of networks. To formally capture costs associated with creating and maintaining connections, we define three edge-complexity measures: the total edge activations, the maximum activated edges per round, and the maximum activated degree of a node. We give (poly)log(n) time algorithms for the task of transforming any $$G_s$$ G s into a $$G_f$$ G f of diameter (poly)log(n), while minimizing the edge-complexity. Our main lower bound shows that $$\varOmega (n)$$ Ω ( n ) total edge activations and $$\varOmega (n/\log n)$$ Ω ( n / log n ) activations per round must be paid by any algorithm (even centralized) that achieves an optimum of $$\varTheta (\log n)$$ Θ ( log n ) rounds. We give three distributed algorithms for our general task. The first runs in $$O(\log n)$$ O ( log n ) time, with at most 2n active edges per round, a total of $$O(n\log n)$$ O ( n log n ) edge activations, a maximum degree $$n-1$$ n - 1 , and a target network of diameter 2. The second achieves bounded degree by paying an additional logarithmic factor in time and in total edge activations. It gives a target network of diameter $$O(\log n)$$ O ( log n ) and uses O(n) active edges per round. Our third algorithm shows that if we slightly increase the maximum degree to polylog(n) then we can achieve $$o(\log ^2 n)$$ o ( log 2 n ) running time.


2021 ◽  
Author(s):  
Björn Haddenhorst ◽  
Viktor Bengs ◽  
Eyke Hüllermeier

AbstractThe efficiency of state-of-the-art algorithms for the dueling bandits problem is essentially due to a clever exploitation of (stochastic) transitivity properties of pairwise comparisons: If one arm is likely to beat a second one, which in turn is likely to beat a third one, then the first is also likely to beat the third one. By now, however, there is no way to test the validity of corresponding assumptions, although this would be a key prerequisite to guarantee the meaningfulness of the results produced by an algorithm. In this paper, we investigate the problem of testing different forms of stochastic transitivity in an online manner. We derive lower bounds on the expected sample complexity of any sequential hypothesis testing algorithm for various forms of stochastic transitivity, thereby providing additional motivation to focus on weak stochastic transitivity. To this end, we introduce an algorithmic framework for the dueling bandits problem, in which the statistical validity of weak stochastic transitivity can be tested, either actively or passively, based on a multiple binomial hypothesis test. Moreover, by exploiting a connection between weak stochastic transitivity and graph theory, we suggest an enhancement to further improve the efficiency of the testing algorithm. In the active setting, both variants achieve an expected sample complexity that is optimal up to a logarithmic factor.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Charlotte Knierim ◽  
Maxime Larcher ◽  
Anders Martinsson

Long paths and cycles in Eulerian digraphs have received a lot of attention recently. In this short note, we show how to use methods from [Knierim, Larcher, Martinsson, Noever, JCTB 148:125--148] to find paths of length $d/(\log d+1)$ in Eulerian digraphs with average degree $d$, improving  the recent result of $\Omega(d^{1/2+1/40})$. Our result is optimal up to at most a logarithmic factor.  


Author(s):  
Clément Berenfeld ◽  
John Harvey ◽  
Marc Hoffmann ◽  
Krishnan Shankar

AbstractThe reach of a submanifold is a crucial regularity parameter for manifold learning and geometric inference from point clouds. This paper relates the reach of a submanifold to its convexity defect function. Using the stability properties of convexity defect functions, along with some new bounds and the recent submanifold estimator of Aamari and Levrard (Ann. Statist. 47(1), 177–204 (2019)), an estimator for the reach is given. A uniform expected loss bound over a $${\mathscr {C}}^k$$ C k model is found. Lower bounds for the minimax rate for estimating the reach over these models are also provided. The estimator almost achieves these rates in the $${\mathscr {C}}^3$$ C 3 and $${\mathscr {C}}^4$$ C 4 cases, with a gap given by a logarithmic factor.


Author(s):  
Ivan Nourdin ◽  
Giovanni Peccati ◽  
Xiaochuan Yang

AbstractWe establish explicit bounds on the convex distance between the distribution of a vector of smooth functionals of a Gaussian field and that of a normal vector with a positive-definite covariance matrix. Our bounds are commensurate to the ones obtained by Nourdin et al. (Ann Inst Henri Poincaré Probab Stat 46(1):45–58, 2010) for the (smoother) 1-Wasserstein distance, and do not involve any additional logarithmic factor. One of the main tools exploited in our work is a recursive estimate on the convex distance recently obtained by Schulte and Yukich (Electron J Probab 24(130):1–42, 2019). We illustrate our abstract results in two different situations: (i) we prove a quantitative multivariate fourth moment theorem for vectors of multiple Wiener–Itô integrals, and (ii) we characterize the rate of convergence for the finite-dimensional distributions in the functional Breuer–Major theorem.


2021 ◽  
Vol 17 (2) ◽  
pp. 1-25
Author(s):  
Chandra Chekuri ◽  
Alina Ene ◽  
Ali Vakilian

We consider node-weighted survivable network design (SNDP) in planar graphs and minor-closed families of graphs. The input consists of a node-weighted undirected graph G = ( V , E ) and integer connectivity requirements r ( uv ) for each unordered pair of nodes uv . The goal is to find a minimum weighted subgraph H of G such that H contains r ( uv ) disjoint paths between u and v for each node pair uv . Three versions of the problem are edge-connectivity SNDP (EC-SNDP), element-connectivity SNDP (Elem-SNDP), and vertex-connectivity SNDP (VC-SNDP), depending on whether the paths are required to be edge, element, or vertex disjoint, respectively. Our main result is an O ( k )-approximation algorithm for EC-SNDP and Elem-SNDP when the input graph is planar or more generally if it belongs to a proper minor-closed family of graphs; here, k = max  uv r ( uv ) is the maximum connectivity requirement. This improves upon the O ( k log  n )-approximation known for node-weighted EC-SNDP and Elem-SNDP in general graphs [31]. We also obtain an O (1) approximation for node-weighted VC-SNDP when the connectivity requirements are in {0, 1, 2}; for higher connectivity our result for Elem-SNDP can be used in a black-box fashion to obtain a logarithmic factor improvement over currently known general graph results. Our results are inspired by, and generalize, the work of Demaine, Hajiaghayi, and Klein [13], who obtained constant factor approximations for node-weighted Steiner tree and Steiner forest problems in planar graphs and proper minor-closed families of graphs via a primal-dual algorithm.


2021 ◽  
Vol 30 (1) ◽  
Author(s):  
Jacobo Torán ◽  
Florian Wörz

AbstractWe show a new connection between the clause space measure in tree-like resolution and the reversible pebble game on graphs. Using this connection, we provide several formula classes for which there is a logarithmic factor separation between the clause space complexity measure in tree-like and general resolution. We also provide upper bounds for tree-like resolution clause space in terms of general resolution clause and variable space. In particular, we show that for any formula F, its tree-like resolution clause space is upper bounded by space$$(\pi)$$ ( π ) $$(\log({\rm time}(\pi))$$ ( log ( time ( π ) ) , where $$\pi$$ π is any general resolution refutation of F. This holds considering as space$$(\pi)$$ ( π ) the clause space of the refutation as well as considering its variable space. For the concrete case of Tseitin formulas, we are able to improve this bound to the optimal bound space$$(\pi)\log n$$ ( π ) log n , where n is the number of vertices of the corresponding graph


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dmitry Grinko ◽  
Julien Gacon ◽  
Christa Zoufal ◽  
Stefan Woerner

AbstractWe introduce a variant of Quantum Amplitude Estimation (QAE), called Iterative QAE (IQAE), which does not rely on Quantum Phase Estimation (QPE) but is only based on Grover’s Algorithm, which reduces the required number of qubits and gates. We provide a rigorous analysis of IQAE and prove that it achieves a quadratic speedup up to a double-logarithmic factor compared to classical Monte Carlo simulation with provably small constant overhead. Furthermore, we show with an empirical study that our algorithm outperforms other known QAE variants without QPE, some even by orders of magnitude, i.e., our algorithm requires significantly fewer samples to achieve the same estimation accuracy and confidence level.


Author(s):  
Bo Jiang ◽  
Haoyue Wang ◽  
Shuzhong Zhang

This paper is concerned with finding an optimal algorithm for minimizing a composite convex objective function. The basic setting is that the objective is the sum of two convex functions: the first function is smooth with up to the dth-order derivative information available, and the second function is possibly nonsmooth, but its proximal tensor mappings can be computed approximately in an efficient manner. The problem is to find—in that setting—the best possible (optimal) iteration complexity for convex optimization. Along that line, for the smooth case (without the second nonsmooth part in the objective), Nesterov proposed an optimal algorithm for the first-order methods ([Formula: see text]) with iteration complexity [Formula: see text], whereas high-order tensor algorithms (using up to general dth-order tensor information) with iteration complexity [Formula: see text] were recently established. In this paper, we propose a new high-order tensor algorithm for the general composite case, with the iteration complexity of [Formula: see text], which matches the lower bound for the dth-order methods as previously established and hence is optimal. Our approach is based on the accelerated hybrid proximal extragradient (A-HPE) framework proposed by Monteiro and Svaiter, where a bisection procedure is installed for each A-HPE iteration. At each bisection step, a proximal tensor subproblem is approximately solved, and the total number of bisection steps per A-HPE iteration is shown to be bounded by a logarithmic factor in the precision required.


Sign in / Sign up

Export Citation Format

Share Document