crustose coralline alga
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
pp. 100016
Author(s):  
Maggie D. Johnson ◽  
Lucia M. Rodriguez Bravo ◽  
Noelle Lucey ◽  
Andrew H. Altieri


2021 ◽  
Vol 12 ◽  
Author(s):  
Fangfang Yang ◽  
Zhiliang Xiao ◽  
Zhangliang Wei ◽  
Lijuan Long

Crustose coralline algae (CCA) play vital roles in producing and stabilizing reef structures and inducing the settlement and metamorphosis of invertebrate larvae in coral reef ecosystems. However, little is known about the bacterial communities associated with healthy and bleached CCA and their interactions with coral larval settlement. We collected samples of healthy, middle semi-bleached, and bleached CCA Porolithon onkodes from Sanya Bay in the South China Sea and investigated their influences on the larval settlement and metamorphosis of the reef-building coral Pocillopora damicornis. The larval settlement/metamorphosis rates all exceeded 70% when exposed to healthy, middle semi-bleached, and bleached algae. Furthermore, the compositions of bacterial community using amplicon pyrosequencing of the V3–V4 region of 16S rRNA were investigated. There were no obvious changes in bacterial community structure among healthy, middle semi-bleached, and bleached algae. Alphaproteobacteria, Bacteroidetes, and Gammaproteobacteria were dominant in all samples, which may contribute to coral larval settlement. However, the relative abundances of several bacterial communities varied among groups. The relative abundances of Mesoflavibacter, Ruegeria, Nautella, and Alteromonas in bleached samples were more than double those in the healthy samples, whereas Fodinicurvata and unclassified Rhodobacteraceae were significantly lower in the bleached samples. Additionally, others at the genus level increased significantly from 8.5% in the healthy samples to 22.93% in the bleached samples, which may be related to algal bleaching. These results revealed that the microbial community structure associated with P. onkodes generally displayed a degree of stability. Furthermore, bleached alga was still able to induce larval settlement and metamorphosis.









Coral Reefs ◽  
2021 ◽  
Vol 40 (2) ◽  
pp. 381-394
Author(s):  
Lars-Erik Petersen ◽  
Mareen Moeller ◽  
Dennis Versluis ◽  
Samuel Nietzer ◽  
Matthias Y. Kellermann ◽  
...  

AbstractMicroorganisms have been reported to induce settlement in various marine invertebrate larvae but their specificity of inductive capacities for the settlement of coral larvae remains poorly understood. In this study, we isolated 56 microbial strains from the crustose coralline alga (CCA) Hydrolithon reinboldii using five different media either with or without additional antibiotics and/or spiked CCA extract. We tested the isolates for their potential to induce settlement behavior in larvae of the brooding scleractinian coral Leptastrea purpurea. From these 56 CCA-associated microbial strains, we identified six bacterial classes and 18 families. The culturable bacterial community associated with H. reinboldii was dominated by Gammaproteobacteria, Actinobacteria, and Alphaproteobacteria while the Illumina MiSeq analysis showed that the culture-independent bacterial community was dominated by Gammaproteobacteria, Alphaproteobacteria, and Flavobacteria. Furthermore, we found no correlation between inductive settlement capacities and phylogenetic relationships. Instead, settlement behavior of L. purpurea larvae was induced by specific isolated species. Strains #1792 (Pseudovibrio denitrificans), #1678 (Acinetobacter pittii), #1633 (Pseudoalteromonas phenolica), #1772 (Marine bacterium LMG1), #1721 (Microbulbifer variabilis), and #1783 (Pseudoalteromonas rubra) induced settlement behavior in coral larvae at mostly high and significant levels (≥ 40%) but the remaining isolates strongly varied in their activity. Multispecies biofilms consisting of four strains (#1792, #1678, #1633, and #1721) were observed to synergistically increase settlement behavior levels (> 90%); however, the addition of #1772 to the multispecies biofilms negatively affected coral larvae and resulted in a total loss of inducing activity. The findings provide new insights into the role of bacteria in the settlement process of scleractinian corals and may help to identify the true nature of bacteria-derived morphogenic cues.



2020 ◽  
Author(s):  
Branwen Williams ◽  
Phoebe T. W. Chan ◽  
Jochen Halfar ◽  
Kathryn Hargan ◽  
Walter Adey


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Taylor N. Whitman ◽  
Andrew P. Negri ◽  
David G. Bourne ◽  
Carly J. Randall

Abstract Healthy benthic substrates that induce coral larvae to settle are necessary for coral recovery. Yet, the biochemical cues required to induce coral settlement have not been identified for many taxa. Here we tested the ability of the crustose coralline alga (CCA) Porolithon onkodes to induce attachment and metamorphosis, collectively termed settlement, of larvae from 15 ecologically important coral species from the families Acroporidae, Merulinidae, Poritidae, and Diploastreidae. Live CCA fragments, ethanol extracts, and hot aqueous extracts of P. onkodes induced settlement (> 10%) for 11, 7, and 6 coral species, respectively. Live CCA fragments were the most effective inducer, achieving over 50% settlement for nine species. The strongest settlement responses were observed in Acropora spp.; the only non-acroporid species that settled over 50% were Diploastrea heliopora, Goniastrea retiformis, and Dipsastraea pallida. Larval settlement was reduced in treatments with chemical extracts compared with live CCA, although high settlement (> 50%) was reported for six acroporid species in response to ethanol extracts of CCA. All experimental treatments failed (< 10%) to induce settlement in Montipora aequituberculata, Mycedium elephantotus, and Porites cylindrica. Individual species responded heterogeneously to all treatments, suggesting that none of the cues represent a universal settlement inducer. These results challenge the commonly-held notion that CCA ubiquitously induces coral settlement, and emphasize the critical need to assess additional cues to identify natural settlement inducers for a broad range of coral taxa.





2020 ◽  
Vol 39 (6) ◽  
pp. 96-106
Author(s):  
Qunju Hu ◽  
Fangfang Yang ◽  
Zhangliang Wei ◽  
Jiahao Mo ◽  
Chao Long ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document