secondary bifurcation
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 6)

H-INDEX

19
(FIVE YEARS 1)

2022 ◽  
Vol 19 (186) ◽  
Author(s):  
Laura Collesano ◽  
Isabella Guido ◽  
Ramin Golestanian ◽  
Andrej Vilfan

Biological cilia pump the surrounding fluid by asymmetric beating that is driven by dynein motors between sliding microtubule doublets. The complexity of biological cilia raises the question about minimal systems that can re-create similar patterns of motion. One such system consists of a pair of microtubules that are clamped at the proximal end. They interact through dynein motors that cover one of the filaments and pull against the other one. Here, we study theoretically the static shapes and the active dynamics of such a system. Using the theory of elastica, we analyse the shapes of two filaments of different lengths with clamped ends. Starting from equal lengths, we observe a transition similar to Euler buckling leading to a planar shape. When further increasing the length ratio, the system assumes a non-planar shape with spontaneously broken chiral symmetry after a secondary bifurcation and then transitions to planar again. The predicted curves agree with experimentally observed shapes of microtubule pairs. The dynamical system can have a stable fixed point, with either bent or straight filaments, or limit cycle oscillations. The latter match many properties of ciliary motility, demonstrating that a two-filament system can serve as a minimal actively beating model.


2021 ◽  
Author(s):  
Samarjeet Singh ◽  
Amitesh Roy ◽  
K V Reeja ◽  
Asalatha A. S. Nair ◽  
Swetaprovo Chaudhuri ◽  
...  

2020 ◽  
Author(s):  
Antoine Renaud ◽  
Louis-Philippe Nadeau ◽  
Antoine Venaille

<p>In the Earth's atmosphere, fast propagating equatorial waves generate slow reversals of the large scale stratospheric winds with a  period of about 28 months. This quasi-biennial oscillation is a spectacular manifestation of wave-mean flow interactions in stratified fluids, with analogues in other planetary atmospheres and laboratory experiments. Recent observations of a disruption of this periodic behavior have been attributed to external perturbations, but the mechanism explaining the disrupted response has remained elusive. We show the existence of secondary bifurcations and a quasiperiodic route to chaos in simplified models of the equatorial atmosphere ranging from the classical Holton-Lindzen-Plumb model to fully nonlinear simulations of stratified fluids. Perturbations of the slow oscillations are widely amplified in the proximity of the secondary bifurcation point. This suggests that intrinsic dynamics may be equally influential as external variability in explaining disruptions of regular wind reversals  [1].</p><p>[1] Renaud, A., Nadeau, L. P., & Venaille, A. (2019). Periodicity Disruption of a Model Quasibiennial Oscillation of Equatorial Winds. Physical Review Letters, 122(21), 214504.<br> </p>


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 789 ◽  
Author(s):  
Sylvain Barbay ◽  
Saliya Coulibaly ◽  
Marcel Clerc

Out-of-equilibrium systems exhibit complex spatiotemporal behaviors when they present a secondary bifurcation to an oscillatory instability. Here, we investigate the complex dynamics shown by a pulsing regime in an extended, one-dimensional semiconductor microcavity laser whose cavity is composed by integrated gain and saturable absorber media. This system is known to give rise experimentally and theoretically to extreme events characterized by rare and high amplitude optical pulses following the onset of spatiotemporal chaos. Based on a theoretical model, we reveal a dynamical behavior characterized by the chaotic alternation of phase and amplitude turbulence. The highest amplitude pulses, i.e., the extreme events, are observed in the phase turbulence zones. This chaotic alternation behavior between different turbulent regimes is at contrast to what is usually observed in a generic amplitude equation model such as the Ginzburg–Landau model. Hence, these regimes provide some insight into the poorly known properties of the complex spatiotemporal dynamics exhibited by secondary instabilities of an Andronov–Hopf bifurcation.


2018 ◽  
Vol 849 ◽  
pp. 777-804 ◽  
Author(s):  
João A. Isler ◽  
Rafael S. Gioria ◽  
Bruno S. Carmo

Stability and nonlinear analyses were employed to study symmetric and asymmetric steady flows through a straight channel with a smooth constriction with 50 % occlusion. Linear stability analysis was carried out to determine the unstable regions and the critical Reynolds numbers for the primary and secondary global instabilities. The primary bifurcation demonstrated an intricate aspect: the three-dimensional modes transfer their energy to the two-dimensional mode, which causes a symmetry breaking of the flow. This behaviour could be observed for Reynolds number lower than the critical, showing that this primary bifurcation is hysteretical. The secondary bifurcation also presented subcritical behaviour, exhibiting a pitchfork diagram with a large hysteretic curve. Given the subcritical character of both bifurcations, the relevance of non-normal growth in these flows were assessed, so that their convective mechanisms were exhaustively investigated. In addition, we could show that, for the secondary instability, optimal initial disturbances with large enough initial energy were able to promote a subcritical nonlinear saturation for a Reynolds number lower than the critical. The physical mechanism behind the transition process occurred by nonlinear interaction between the two- and three-dimensional modes, which established oscillatory behaviour, moreover, this energy exchange between the modes led the flow to the nonlinear saturated state. Therefore, the two-dimensional modes play a key role in the primary and secondary bifurcations of this system.


2017 ◽  
Vol 66 ◽  
pp. 433-445 ◽  
Author(s):  
V.B. Glavardanov ◽  
R.B. Maretic ◽  
M.M. Zigic ◽  
N.M. Grahovac

2017 ◽  
Vol 263 (5) ◽  
pp. 2687-2714 ◽  
Author(s):  
Kousuke Kuto ◽  
Tatsuki Mori ◽  
Tohru Tsujikawa ◽  
Shoji Yotsutani

Sign in / Sign up

Export Citation Format

Share Document