annular combustor
Recently Published Documents


TOTAL DOCUMENTS

295
(FIVE YEARS 83)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 233 ◽  
pp. 111565
Author(s):  
Håkon T. Nygård ◽  
Giulio Ghirardo ◽  
Nicholas A. Worth

Author(s):  
Nikola Kafedzhiyski ◽  
Maria Mayorca

Abstract Decarbonization and sustainability efforts challenge gas turbine engineers to come up with creative strategies for reduction of emissions and efficiency increase over the whole operating range. Burner staging at part loads presents a flexible solution to achieve these goals through selective burner deactivation. Shutting off burners could also be required for combustion of increased H2 content at some conditions. Burner staging will create circumferential unevenness with patterns of hot and cold streaks that could excite blade rows through the entire turbine. This paper presents a parametric method for annular combustor staging patterns profile generation intended for use for forced response predictions from a limited number of combustor CFD calculations while keeping the key phenomenological features. Two cases with burner staging turbine inlet temperature distributions are considered and compared to a base case with uniform temperature distribution. The unsteady aerodynamic forcing was obtained from full wheel time marching unsteady computational fluid dynamics calculations. The results show that the hot streaks generate important and noticeable excitation sources. Additionally, the results show that the pattern generator could be used extensively before and after the unsteady calculations phase to minimize the excitation levels and the computational load.


Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121062
Author(s):  
Wei Gao ◽  
Jinghu Yang ◽  
Yong Mu ◽  
Fuqiang Liu ◽  
Shaolin Wang ◽  
...  

Author(s):  
Byeonguk Ahn ◽  
Thomas Indlekofer ◽  
James Dawson ◽  
Nicholas Worth

Abstract The present article experimentally investigates the triggering and transient growth of azimuthal instabilities in a pressurized laboratory-scale annular combustor featuring twelve methane/hydrogen flames, as the equivalence ratio is ramped up and down. The ramping rate of equivalence ratio is varied to examine its effect on the transient thermoacoustic response and the driving mechanisms, highlighting a number of previously unseen features. As the equivalence ratio is dynamically increased, all cases were observed to feature a distinct modal trajectory, during the onset of high amplitude instabilities. Strongly spinning counter-clockwise modes are first excited before a dynamic transition to strongly spinning clockwise modes occurs. Furthermore, the strength of the spinning mode (quantified through the spin ratio or nature angle) was shown to feature a local minima before the spinning mode stabilized in the system, which corresponds to an almost pure spinning state. Hysteresis behaviour was observed in both the amplitude and nature of the mode, resulting in different thresholds for the onset and decay of the instability, depending on the time history of the combustor. Increasing the ramping rate was found to reduce the amount of hysteresis in the system. Furthermore, the high amplitude of the instability resulted in significant harmonic components. The behaviour of the harmonics generally resembles the fundamental component, albeit with some notable exceptions.


Author(s):  
Roberto Meloni ◽  
Stefano Gori ◽  
Antonio Andreini ◽  
Pier Carlo Nassini

Abstract The present paper summarizes the development of a Large-Eddy Simulation (LES) based approach for the prediction of CO emission in an industrial gas turbine combustor. Since the operating point of the modern combustors is really close to the extinction limit, the availability of a tool able to detect the onset of high-CO production can be useful for the proper definition of the combustion chamber air split or to introduce design improvements for the premixer itself. The accurate prediction of CO cannot rely on the flamelet assumption, representing the fundament of the modern combustion models. Consequently, in this work, the Extended Turbulent Flame Speed Closure (ETFSC) of the standard Flamelet Generated Manifold (FGM) model is employed to consider the effect of the heat loss and the strain rate on the flame brush. Moreover, a customized CO-Damköhler number is introduced to de-couple the in-flame CO production region from the post-flame contribution where the oxidation takes place. A fully premixed burner working at representative values of pressure and flame temperature of an annular combustor is selected for the validation phase of the process. The comparison against the experimental data shows that the process is not only able to capture the trend but also to predict CO in a quantitative manner. In particular, the interaction between the flame and the air fluxes at some critical sections of the combustor, leading the CO emission from the equilibrium value to the super-equilibrium, has been correctly reproduced.


Author(s):  
Roberto Meloni ◽  
Antonio Andreini ◽  
Pier Carlo Nassini

Abstract This paper presents a new CFD approach for the assessment of the NOx emission. The methodology is validated against the experimental data of a heavy-duty gas turbine annular combustor. Since the NOx formation involves time scales that are different from the fuel oxidation time, the present work defines the transport equation source terms for NOx on the basis of a dedicate NOx-Damköhler number. The latter parameter allows to properly distinguish the "in-flame" contribution from the "post-flame" one. While the former is a mix of several mechanisms (prompt, N2O-pathway, thermal), the latter is dominated by the thermal contribution. The validation phase is developed in a Large-Eddy Simulation (LES) framework where the Extended Turbulent Flame Speed model is implemented to consider the influence of both heat loss and strain rate on the progress variable source term. The accuracy of the model against the most important operability parameters of the combustor is verified. A strong focus on the fuel composition effect onto NOx is presented as well. For any simulated operating condition, the present methodology is able to provide a limited percentage error if compared with the data, considering also different combustion regimes. Leveraging this alignment, the last portion of the paper is dedicated to a detailed post processing highlighting the role of some key factors on to NOx formation. In particular, the focus will be dedicated to the impact of the fuel gas composition and the pilot split.


Sign in / Sign up

Export Citation Format

Share Document