mechanic calculation
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Electrochem ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 631-642
Author(s):  
Koichi Jeremiah Aoki ◽  
Ridong He ◽  
Jingyuan Chen

Variations of the double layer capacitances (DLCs) at a platinum electrode with concentrations and kinds of salts in aqueous solutions were examined in the context of facilitating orientation of solvent dipoles. With an increase in ionic concentrations, the DLCs increased by ca. a half and then kept constant at concentrations over 1 mol dm−3. This increase was classically explained in terms of the Gouy–Chapman (GC) equation combined with the Stern model. Unfortunately, measured DLCs were neither satisfied with the Stern model nor the GC theory. Our model suggests that salts destroy hydrogen bonds at the electrode–solution interface to orient water dipoles toward the external electric field. A degree of the orientation depends on the interaction energy between the salt ion and a water dipole. The statistical mechanic calculation allowed us to derive an equation for the DLC as a function of salt concentration and the interaction energy. The equation took the Langmuir-type in the relation with the concentration. The interaction energy was obtained for eight kinds of salts. The energy showed a linear relation with the interaction energy of ion–solvent for viscosity, called the B-coefficient.


2016 ◽  
Vol 36 (4) ◽  
pp. 405-411 ◽  
Author(s):  
Chao Shao ◽  
Xin Ye ◽  
Zhijing Zhang ◽  
Dengyu Zhou ◽  
Yuhong Liu

Purpose Micro ultra-thin tubes have important implications in aerospace, nuclear energy and other fields. In microassembly process, these parts are characterized by following reasons: the small size can easily lead to damage when gripping, even for low intensity and the parts are mainly affected by the instability of light source, for vision-based systems, the visual information about ultra-thin tubes is difficult to gather and the contact state is hard to monitor. Design/methodology/approach The paper presents a new method to adjust the position deviations based on contact forces during microassembly processes. Specific research is such that the assembly model was established based both on mechanic calculation and numerical simulation; the assembly task was carried out on an in-house microassembly system with coaxial alignment function (MSCA), the contact statements were controlled based on force sensor feedback signals and the model of the relationship between contact force and assembly deviations was established. Through a comparative study, the results of experiment and simulation differ by less than 11 per cent, validating the accuracy and feasibility of the method. Findings The model of assembly force and position deviations of micro ultra-thin tubes based on MSCA has been built. Besides, the assembly force threshold, and the assembly process parameters have been obtained. Originality/value The assembly process parameters obtained from experiments can be applied in the precision assembly and provide theoretical guidance and technical support to the precision assembly of the multi-scale parts.


2013 ◽  
Vol 353-356 ◽  
pp. 1047-1050
Author(s):  
Bao Yuan Yuan ◽  
Wei Fan Pan ◽  
Qi Wang

Slope failure is a kind of serious geologic disaster. This paper based on the detailed geology survey and analysis, judged the failure mode of the Pipayuan slope; Using ADINA which is professional finite element software, made mechanic calculation of slope, analyzed the stress condition and discussed the change of stress. According to the Strength Reduction Method, the slope stability safety coefficient was calculated. Results show that: the whole slope, may be slide along the soft interlayer, especially in the case in the event of heavy rainThe effectiveness is verified by the finite element calculation of slope with anti-slide pile reinforcement.


Sign in / Sign up

Export Citation Format

Share Document