undecidable property
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Matthias Hoelzel ◽  
Richard Wilke

We present syntactic characterisations for the union closed fragments of existential second-order logic and of logics with team semantics. Since union closure is a semantical and undecidable property, the normal form we introduce enables the handling and provides a better understanding of this fragment. We also introduce inclusion-exclusion games that turn out to be precisely the corresponding model-checking games. These games are not only interesting in their own right, but they also are a key factor towards building a bridge between the semantic and syntactic fragments. On the level of logics with team semantics we additionally present restrictions of inclusion-exclusion logic to capture the union closed fragment. Moreover, we define a team based atom that when adding it to first-order logic also precisely captures the union closed fragment of existential second-order logic which answers an open question by Galliani and Hella.


2017 ◽  
Vol 17 (5-6) ◽  
pp. 906-923 ◽  
Author(s):  
EKATERINA KOMENDANTSKAYA ◽  
YUE LI

AbstractLogic Programming is a Turing complete language. As a consequence, designing algorithms that decide termination and non-termination of programs or decide inductive/coinductive soundness of formulae is a challenging task. For example, the existing state-of-the-art algorithms can only semi-decide coinductive soundness of queries in logic programming for regular formulae. Another, less famous, but equally fundamental and important undecidable property is productivity. If a derivation is infinite and coinductively sound, we may ask whether the computed answer it determines actually computes an infinite formula. If it does, the infinite computation is productive. This intuition was first expressed under the name of computations at infinity in the 80s. In modern days of the Internet and stream processing, its importance lies in connection to infinite data structure processing. Recently, an algorithm was presented that semi-decides a weaker property – of productivity of logic programs. A logic program is productive if it can give rise to productive derivations. In this paper, we strengthen these recent results. We propose a method that semi-decides productivity of individual derivations for regular formulae. Thus, we at last give an algorithmic counterpart to the notion of productivity of derivations in logic programming. This is the first algorithmic solution to the problem since it was raised more than 30 years ago. We also present an implementation of this algorithm.


1997 ◽  
Vol 125 (7) ◽  
pp. 2147-2148 ◽  
Author(s):  
Daniel T. Stallworth ◽  
Fred W. Roush

Sign in / Sign up

Export Citation Format

Share Document