thermal parametric instability
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2002 ◽  
Vol 20 (5) ◽  
pp. 647-653 ◽  
Author(s):  
E. Kolesnikova ◽  
T. R. Robinson ◽  
J. A. Davies

Abstract. Simultaneous HF scattering from the different regions of the heated volume is used to investigate characteristics of the small-scale field-aligned irregularities in the F-region. Time of growth, decay rate and saturation level for different pump powers are deduced from the observations and are compared with their behaviour predicted by the thermal parametric instability model. As a result, the estimates of the density and of the temperature modifications inside of the irregularities are obtained.Key words. Ionosphere (ionospheric irregularities)


1983 ◽  
Vol 30 (3) ◽  
pp. 463-478 ◽  
Author(s):  
M. C. Lee ◽  
S. P. Kuo

A purely growing instability characterized by a four-wave interaction has been analysed in a uniform, magnetized plasma. Up-shifted and down-shifted upper-hybrid waves and a non-oscillatory mode can be excited by a pump wave of ordinary rather than extraordinary polarization in the case of ionospheric heating. The differential Ohmic heating force dominates over the ponderomotive force as the wave–wave coupling mechanism. The beating current at zero frequency produces a significant stabilizing effect on the excitation of short-scale modes by counterbalancing the destabilizing effect of the differential Ohmic heating. The effect of ionospheric inhomogeneity is estimated, showing a tendency to raise the thresholds of the instability. When applied to ionospheric heating experiments, the present theory can explain the excitation of field-aligned plasma lines and ionospheric irregularities with a continuous spectrum ranging from metre-scale to hundreds of metre-scale. Further, the proposed mechanism may become a competitive process to the parametric decay instability and be responsible for the overshoot phenomena of the plasma line enhancement at Arecibo.


Sign in / Sign up

Export Citation Format

Share Document