random packing
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 32)

H-INDEX

47
(FIVE YEARS 5)

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Ralf Stannarius ◽  
Jonas Schulze

AbstractPacking problems, even of objects with regular geometries, are in general non-trivial. For few special shapes, the features of crystalline as well as random, irregular two-dimensional (2D) packing structures are known. The packing of 2D crosses does not yet belong to the category of solved problems. We demonstrate in experiments with crosses of different aspect ratios (arm width to length) which packing fractions are actually achieved by random packing, and we compare them to densest regular packing structures. We determine local correlations of the orientations and positions after ensembles of randomly placed crosses were compacted in the plane until they jam. Short-range orientational order is found over 2 to 3 cross lengths. Similarly, correlations in the spatial distributions of neighbors extend over 2 to 3 crosses. There is no simple relation between the geometries of the crosses and the peaks in the spatial correlation functions, but some features of the orientational correlations can be traced to typical local configurations.


Author(s):  
You Lv ◽  
Yiyang E ◽  
Zhaobo Tian ◽  
Keyu Chi ◽  
Qi Sun ◽  
...  

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Jessica L. Baker ◽  
Subhas K. Venayagamoorthy ◽  
Susan K. De Long

Author(s):  
Qianfeng Gu ◽  
Xiaochen Xue ◽  
Osama M. Darwesh ◽  
Pascal Habimana ◽  
Wei Liu ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1063
Author(s):  
Vladimir Mityushev ◽  
Zhanat Zhunussova

A close relation between the optimal packing of spheres in Rd and minimal energy E (effective conductivity) of composites with ideally conducting spherical inclusions is established. The location of inclusions of the optimal-design problem yields the optimal packing of inclusions. The geometrical-packing and physical-conductivity problems are stated in a periodic toroidal d-dimensional space with an arbitrarily fixed number n of nonoverlapping spheres per periodicity cell. Energy E depends on Voronoi tessellation (Delaunay graph) associated with the centers of spheres ak (k=1,2,…,n). All Delaunay graphs are divided into classes of isomorphic periodic graphs. For any fixed n, the number of such classes is finite. Energy E is estimated in the framework of structural approximations and reduced to the study of an elementary function of n variables. The minimum of E over locations of spheres is attained at the optimal packing within a fixed class of graphs. The optimal-packing location is unique within a fixed class up to translations and can be found from linear algebraic equations. Such an approach is useful for random optimal packing where an initial location of balls is randomly chosen; hence, a class of graphs is fixed and can dynamically change following prescribed packing rules. A finite algorithm for any fixed n is constructed to determine the optimal random packing of spheres in Rd.


2021 ◽  
Author(s):  
Xiang Wang ◽  
Zhen-Yu Yin ◽  
Dong Su ◽  
Xiaoxin Wu ◽  
Jidong Zhao

Sign in / Sign up

Export Citation Format

Share Document