bond covalency
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
Benjamin L. L. Réant ◽  
Victoria E. J. Berryman ◽  
Annabel R. Basford ◽  
Lydia E. Nodaraki ◽  
Ashley J. Wooles ◽  
...  

2021 ◽  
Vol MA2021-01 (7) ◽  
pp. 438-438
Author(s):  
Johana Dolores Aleman ◽  
Nicole Adelstein ◽  
Oskar Kenyatta Garcia

2021 ◽  
Author(s):  
Daniel Bím ◽  
Anastassia N. Alexandrova

<div> <p>In the last 50 years, the blue copper proteins became central targets of investigation. Extensive experiments focused on the first- and second-coordination spheres of Cu to probe the effect of local perturbations on its properties. We found that local electric fields, generated by charged residues evolutionarily placed throughout the protein edifice, constitute an additional significant factor regulating blue copper proteins. These fields are not random, but exhibit a highly specific directionality, negative with respect to Cu-S<sub>Cys</sub> and Cu-S<sub>Met</sub> in the Cu first shell. The field magnitude contributes to fine-tuning of the geometric and electronic properties of Cu sites in individual blue copper proteins. Specifically, the local electric fields evidently control the Cu-S<sub>Met</sub> bond distance, Cu(II)-S<sub>Cys</sub> bond covalency, and the energies of the frontier molecular orbitals, which, in turn, govern the Cu(II/I) reduction potential and the relative absorption intensities at 450 nm and 600 nm.</p> </div> <br>


2021 ◽  
Author(s):  
Daniel Bím ◽  
Anastassia N. Alexandrova

<div> <p>In the last 50 years, the blue copper proteins became central targets of investigation. Extensive experiments focused on the first- and second-coordination spheres of Cu to probe the effect of local perturbations on its properties. We found that local electric fields, generated by charged residues evolutionarily placed throughout the protein edifice, constitute an additional significant factor regulating blue copper proteins. These fields are not random, but exhibit a highly specific directionality, negative with respect to Cu-S<sub>Cys</sub> and Cu-S<sub>Met</sub> in the Cu first shell. The field magnitude contributes to fine-tuning of the geometric and electronic properties of Cu sites in individual blue copper proteins. Specifically, the local electric fields evidently control the Cu-S<sub>Met</sub> bond distance, Cu(II)-S<sub>Cys</sub> bond covalency, and the energies of the frontier molecular orbitals, which, in turn, govern the Cu(II/I) reduction potential and the relative absorption intensities at 450 nm and 600 nm.</p> </div> <br>


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Myrtille O.J.Y. Hunault ◽  
Denis Menut ◽  
Olivier Tougait

Three uranyl borates, UO2B2O4, LiUO2BO3 and NaUO2BO3, have been prepared by solid state syntheses. The influence of the crystallographic structure on the splitting of the empty 5f and 6d states have been probed using High Energy Resolved Fluorescence Detected X-ray Absorption Spectroscopy (HERFD-XAS) at the uranium M4-edge and L3-edge respectively. We demonstrate that the 5f splitting is increased by the decrease of the uranyl U-Oax distance, which in turn correlates with an increased bond covalency. This is correlated to the equatorial coordination change of the uranium. The role of the alkalis as charge compensating the axial oxygen of the uranyl is discussed.


2020 ◽  
Author(s):  
Rimsha Mehmood ◽  
Heather Kulik

Quantum-mechanical/molecular-mechanical (QM/MM) methods are essential to the study of metalloproteins, but the relative importance of sampling and degree of QM treatment in achieving quantitative predictions is poorly understood. We study the relative magnitude of configurational and QM-region sensitivity of energetic and electronic properties in a representative Zn<sup>2+</sup>metal binding site of a DNA methyltransferase. To quantify property variations, we analyze snapshots extracted from 250 ns of molecular dynamics simulation. To understand the degree of QM-region sensitivity, we perform analysis using QM regions ranging from a minimal 49-atom region consisting only of the Zn<sup>2+</sup>metal and its four coordinating Cys residues up to a 628-atom QM region that includes residues within 12 Å of the metal center. Over the configurations sampled, we observe that illustrative properties (e.g., rigid Zn<sup>2+</sup>removal energy) exhibit large fluctuations that are well captured with even minimal QM regions. Nevertheless, for both energetic and electronic properties, we observe a slow approach to asymptotic limits with similarly large changes in absolute values that converge only with larger (ca. 300-atom) QM region sizes. For the smaller QM regions, the electronic description of Zn<sup>2+</sup>binding is incomplete: the metal binds too tightly, is too stabilized by the strong electrostatic potential of MM point charges, and the Zn-S bond covalency is overestimated. Overall, this work suggests that efficient sampling with QM/MM in small QM regions is an effective method to explore the influence of enzyme structure on target properties. At the same time, accurate descriptions of electronic and energetic properties require a larger QM region than the minimal metal-coordinating residues in order to converge treatment of both metal-local bonding and the overall electrostatic environment.


2020 ◽  
Author(s):  
Rimsha Mehmood ◽  
Heather Kulik

Quantum-mechanical/molecular-mechanical (QM/MM) methods are essential to the study of metalloproteins, but the relative importance of sampling and degree of QM treatment in achieving quantitative predictions is poorly understood. We study the relative magnitude of configurational and QM-region sensitivity of energetic and electronic properties in a representative Zn<sup>2+</sup>metal binding site of a DNA methyltransferase. To quantify property variations, we analyze snapshots extracted from 250 ns of molecular dynamics simulation. To understand the degree of QM-region sensitivity, we perform analysis using QM regions ranging from a minimal 49-atom region consisting only of the Zn<sup>2+</sup>metal and its four coordinating Cys residues up to a 628-atom QM region that includes residues within 12 Å of the metal center. Over the configurations sampled, we observe that illustrative properties (e.g., rigid Zn<sup>2+</sup>removal energy) exhibit large fluctuations that are well captured with even minimal QM regions. Nevertheless, for both energetic and electronic properties, we observe a slow approach to asymptotic limits with similarly large changes in absolute values that converge only with larger (ca. 300-atom) QM region sizes. For the smaller QM regions, the electronic description of Zn<sup>2+</sup>binding is incomplete: the metal binds too tightly, is too stabilized by the strong electrostatic potential of MM point charges, and the Zn-S bond covalency is overestimated. Overall, this work suggests that efficient sampling with QM/MM in small QM regions is an effective method to explore the influence of enzyme structure on target properties. At the same time, accurate descriptions of electronic and energetic properties require a larger QM region than the minimal metal-coordinating residues in order to converge treatment of both metal-local bonding and the overall electrostatic environment.


2020 ◽  
Vol 299 ◽  
pp. 112174 ◽  
Author(s):  
Yan-Mei Chen ◽  
Cong-Zhi Wang ◽  
Qun-Yan Wu ◽  
Jian-Hui Lan ◽  
Zhi-Fang Chai ◽  
...  

2019 ◽  
Vol 58 (7) ◽  
pp. 4152-4163 ◽  
Author(s):  
Kimberly C. Mullane ◽  
Peter Hrobárik ◽  
Thibault Cheisson ◽  
Brian C. Manor ◽  
Patrick J. Carroll ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document