bond distance
Recently Published Documents


TOTAL DOCUMENTS

347
(FIVE YEARS 66)

H-INDEX

34
(FIVE YEARS 4)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3450
Author(s):  
Suci Winarsih ◽  
Faisal Budiman ◽  
Hirofumi Tanaka ◽  
Tadashi Adachi ◽  
Akihiro Koda ◽  
...  

The nano-size effects of high-Tc cuprate superconductor La2−xSrxCuO4 with x = 0.20 are investigated using X-ray diffractometry, Transmission electron microscopy, and muon-spin relaxation (μSR). It is investigated whether an increase in the bond distance of Cu and O atoms in the conducting layer compared to those of the bulk state might affect its physical and magnetic properties. The μSR measurements revealed the slowing down of Cu spin fluctuations in La2−xSrxCuO4 nanoparticles, indicating the development of a magnetic correlation at low temperatures. The magnetic correlation strengthens as the particle size reduces. This significantly differs from those observed in the bulk form, which show a superconducting state below Tc. It is indicated that reducing the particle size of La2−xSrxCuO4 down to nanometer size causes the appearance of magnetism. The magnetism enhances with decreasing particle size.


2021 ◽  
Author(s):  
Toru Shiozaki ◽  
Bess Vlaisavljevich

We report the accurate computational vibrational analysis of the Cr–Cr bond in dichromium complexes using second-order multireference complete active space methods (CASPT2), allowing direct comparison with experimental spectroscopic data both to facilitate interpreting the low-energy region of the spectra and to provide insights into the nature of the bonds themselves. Recent technological development by the authors has realized such computation for the first time. Accurate simulation of the vibrational structure of these compounds has been hampered by their notorious multiconfigurational electronic structure that yields bond distances that do not correlate with bond order. Some measured Cr–Cr vibrational stretching modes, ν(Cr2), have suggested weaker bonding, even for so-called ultrashort Cr–Cr bonds, while others are in line with the bond distance. Here we optimize the geometries and compute ν(Cr2) with CASPT2 for three well-characterized complexes, Cr2(O2CCH3)4(H2O)2, Cr2(mhp)4, and Cr2(dmp)4. We obtain CASPT2 harmonic ν(Cr2) modes in good agreement with experiment at 282 cm−1 for Cr2(mhp)4 and 353 cm−1 for Cr2(dmp)4, compute 50Cr and 54Cr isotope shifts, and demonstrate that the use of the so-called IPEA shift leads to improved Cr–Cr distances. Additionally, normal mode sampling was used to estimate anharmonicity along ν(Cr2) leading to an anharmonic mode of 272 cm−1 for Cr2(mhp)4 and 333 cm−1 for Cr2(dmp)4.


2021 ◽  
Author(s):  
Toru Shiozaki ◽  
Bess Vlaisavljevich

We report the accurate computational vibrational analysis of the Cr–Cr bond in dichromium complexes using second-order multireference complete active space methods (CASPT2), allowing direct comparison with experimental spectroscopic data both to facilitate interpreting the low-energy region of the spectra and to provide insights into the nature of the bonds themselves. Recent technological development by the authors has realized such computation for the first time. Accurate simulation of the vibrational structure of these compounds has been hampered by their notorious multiconfigurational electronic structure that yields bond distances that do not correlate with bond order. Some measured Cr–Cr vibrational stretching modes, ν(Cr2), have suggested weaker bonding, even for so-called ultrashort Cr–Cr bonds, while others are in line with the bond distance. Here we optimize the geometries and compute ν(Cr2) with CASPT2 for three well-characterized complexes, Cr2(O2CCH3)4(H2O)2, Cr2(mhp)4, and Cr2(dmp)4. We obtain CASPT2 harmonic ν(Cr2) modes in good agreement with experiment at 282 cm−1 for Cr2(mhp)4 and 353 cm−1 for Cr2(dmp)4, compute 50Cr and 54Cr isotope shifts, and demonstrate that the use of the so-called IPEA shift leads to improved Cr–Cr distances. Additionally, normal mode sampling was used to estimate anharmonicity along ν(Cr2) leading to an anharmonic mode of 272 cm−1 for Cr2(mhp)4 and 333 cm−1 for Cr2(dmp)4.


2021 ◽  
Author(s):  
◽  
David J Koedyk

<p>This thesis reports the coordination chemistry of phosphinocarbonyl ligands with platinum and describes the influence of phosphine substituents on the mechanism of chelation and the coordination mode of the carbonyl moiety. The ligands synthesised were 2-diphenylphosphinobenzaldehyde (1), 2-diphenylphosphinoacetophenone (2), 2-bis(pentafluorophenyl)phosphinobenzaldehyde (3), and 2-di-tert-butylphosphinobenzaldehyde (4). Compounds 1, 3, and 4 were selected on the basis of their steric bulk and extent to which they donate electron density to the metal. Compound 2 contained the same phosphine substituents to 1, but is the methyl ketone analogue and therefore does not contain the CHO moiety. The cone angle and electronic parameter of compounds 1–4 were compared to the reported values of PPh3, PPh(C6F5)2, and PPhtBu2. Compounds 3 and 4 were similarly bulky, and had larger cone angles than 1. The electron donating capacity of compound 4 was greater than that of 1, and compound 3 was the least electron donating. A new synthetic method for the preparation of 4 is also reported. The coordination chemistry of ligands 1–4 was investigated with platinum(II) and platinum(0) starting materials to assess the influence of the steric and electronic parameters of the phosphine on the chelation of the ligand through the carbonyl to platinum. Coordination of the ligand went through the initial coordination of the phosphine and, depending on the identity of that phosphine, may be followed by chelation of the carbonyl moiety to form a P,C chelate. However, the site of the platinum–carbon bond in the P,C metallacycle depends on the ligand employed. Coordination of the phosphinoaldehyde ligands 1, 3, and 4 produced Pt-C bonds via the C-H activation of the aldehyde CHO group whereas for ketophosphine 2, C-H activation occurred at the α-methyl group. The rate at which C-H activation occurred increased with increasing electron donation from the phosphorus to platinum. Compound 4 chelates to platinum more rapidly than compound 1, while 3 did not undergo chelation at room temperature. Although chelation was only observed to occur via C-H activation, the final products of the coordination reactions of 1–4 with platinum starting materials differed depending on the identity of the ligand. The C-H activation of two molecules of 1 with platinum(II) or platinum(0) produced a platina-β-diketone, cis-[Pt(P,C-2-PPh2C6H4CO)2] (21), which is capable of coordinating to H+, Li+, BF2 +, and [Rh(1,5-cyclooctadiene)]+ between the mutually cis carbonyl groups. One carbonyl moiety of 21 can also undergo condensation with primary amines and ammonia to produce platina-β-ketoimine complexes. The ketone moiety of ligand 2 reacted with platinum(II) starting materials through C-H activation of the terminal methyl group to form the six-membered bis-chelate complex analogous to complex 21. The reaction of 2 with platinum(0) starting materials resulted in the formation of a platinum hydride intermediate which mediated chelation through the partial reduction of the ketone group of one ligand, to form the product, [Pt(P,C-2-PPh2C6H4COCH2)(P,C-2-PPh2C6H4C(OH)CH3)] (48) . The reaction of 3 with [PtMe2(1,5-hexadiene)] at elevated temperatures resulted in the formation of [Pt(P,C-2-PPh2C6H4)(P,C-2-PPh2C6H4CO)] (54) – a decarbonylated and ortho-metallated complex containing a four-membered metallacycle. The platinum-phosphorus bond in the four-membered ring of 54 has a bond distance of 2.385(2) Å – the longest Pt–P bond reported to date. Ligand 4 reacted rapidly with platinum(II) starting materials and produced numerous chelation products. Complexes of ligand 4 were only observed to contain mutually trans phosphines, likely due to the steric bulk of the tert-butyl substituents. Comparison of the coordination chemistry of ligands 1–4 suggests that the propensity toward C-H activation of the ligands is predominantly determined by the electronic character of the phosphine (although steric effects cannot be disregarded), and the more electron-rich the phosphine, the more rapidly chelation occurs.</p>


2021 ◽  
Author(s):  
◽  
David J Koedyk

<p>This thesis reports the coordination chemistry of phosphinocarbonyl ligands with platinum and describes the influence of phosphine substituents on the mechanism of chelation and the coordination mode of the carbonyl moiety. The ligands synthesised were 2-diphenylphosphinobenzaldehyde (1), 2-diphenylphosphinoacetophenone (2), 2-bis(pentafluorophenyl)phosphinobenzaldehyde (3), and 2-di-tert-butylphosphinobenzaldehyde (4). Compounds 1, 3, and 4 were selected on the basis of their steric bulk and extent to which they donate electron density to the metal. Compound 2 contained the same phosphine substituents to 1, but is the methyl ketone analogue and therefore does not contain the CHO moiety. The cone angle and electronic parameter of compounds 1–4 were compared to the reported values of PPh3, PPh(C6F5)2, and PPhtBu2. Compounds 3 and 4 were similarly bulky, and had larger cone angles than 1. The electron donating capacity of compound 4 was greater than that of 1, and compound 3 was the least electron donating. A new synthetic method for the preparation of 4 is also reported. The coordination chemistry of ligands 1–4 was investigated with platinum(II) and platinum(0) starting materials to assess the influence of the steric and electronic parameters of the phosphine on the chelation of the ligand through the carbonyl to platinum. Coordination of the ligand went through the initial coordination of the phosphine and, depending on the identity of that phosphine, may be followed by chelation of the carbonyl moiety to form a P,C chelate. However, the site of the platinum–carbon bond in the P,C metallacycle depends on the ligand employed. Coordination of the phosphinoaldehyde ligands 1, 3, and 4 produced Pt-C bonds via the C-H activation of the aldehyde CHO group whereas for ketophosphine 2, C-H activation occurred at the α-methyl group. The rate at which C-H activation occurred increased with increasing electron donation from the phosphorus to platinum. Compound 4 chelates to platinum more rapidly than compound 1, while 3 did not undergo chelation at room temperature. Although chelation was only observed to occur via C-H activation, the final products of the coordination reactions of 1–4 with platinum starting materials differed depending on the identity of the ligand. The C-H activation of two molecules of 1 with platinum(II) or platinum(0) produced a platina-β-diketone, cis-[Pt(P,C-2-PPh2C6H4CO)2] (21), which is capable of coordinating to H+, Li+, BF2 +, and [Rh(1,5-cyclooctadiene)]+ between the mutually cis carbonyl groups. One carbonyl moiety of 21 can also undergo condensation with primary amines and ammonia to produce platina-β-ketoimine complexes. The ketone moiety of ligand 2 reacted with platinum(II) starting materials through C-H activation of the terminal methyl group to form the six-membered bis-chelate complex analogous to complex 21. The reaction of 2 with platinum(0) starting materials resulted in the formation of a platinum hydride intermediate which mediated chelation through the partial reduction of the ketone group of one ligand, to form the product, [Pt(P,C-2-PPh2C6H4COCH2)(P,C-2-PPh2C6H4C(OH)CH3)] (48) . The reaction of 3 with [PtMe2(1,5-hexadiene)] at elevated temperatures resulted in the formation of [Pt(P,C-2-PPh2C6H4)(P,C-2-PPh2C6H4CO)] (54) – a decarbonylated and ortho-metallated complex containing a four-membered metallacycle. The platinum-phosphorus bond in the four-membered ring of 54 has a bond distance of 2.385(2) Å – the longest Pt–P bond reported to date. Ligand 4 reacted rapidly with platinum(II) starting materials and produced numerous chelation products. Complexes of ligand 4 were only observed to contain mutually trans phosphines, likely due to the steric bulk of the tert-butyl substituents. Comparison of the coordination chemistry of ligands 1–4 suggests that the propensity toward C-H activation of the ligands is predominantly determined by the electronic character of the phosphine (although steric effects cannot be disregarded), and the more electron-rich the phosphine, the more rapidly chelation occurs.</p>


2021 ◽  
Author(s):  
José Abundio Daniel Alva-Tamayo ◽  
Iván Guillén-Escamilla ◽  
Gloria Arlette Méndez-Maldonado ◽  
José Guillermo Méndez-Bermúdez

Abstract A new force field for 1-propanol, in the united and all atom models, has been obtained by combining two different empirical methodologies. The first was developed by scaling atom charges, and Lennard-Jones parameters to fit the dielectric constant, surface tension, and density ((2018) J. Chem. Theory Comput. 14:5949-5958). The second methodology consists of moving these parameters and together with the bond distance to obtain the liquid-vapor phase diagram of the CO2 molecule ((1995) J. Phys. Chem. 99:12021-12024). The last methodology is used to obtain the self-diffusion coefficient, which was not considered in the first one. With this new methodology, the experimental density, dielectric constant, surface tension, and self-diffusion coefficient at ambient temperature could be achieved. Furthermore, we show the temperature dependence of the aforementioned properties. The static structure factors are in accordance with the experimental spectrum. Solubility is increased to the experimental value for the united atom model after applying this methodology and for all atom scheme, the experimental solubility value is maintained.


2021 ◽  
Vol 94 (10) ◽  
Author(s):  
Andreas Bittracher ◽  
Johann Moschner ◽  
Beate Koksch ◽  
Roland Netz ◽  
Christof Schütte

Abstract We demonstrate the application of the transition manifold framework to the late-stage fibrillation process of the NFGAILS peptide, a amyloidogenic fragment of the human islet amyloid polypeptide (hIAPP). This framework formulates machine learning methods for the analysis of multi-scale stochastic systems from short, massively parallel molecular dynamical simulations. We identify key intermediate states and dominant pathways of the process. Furthermore, we identify the optimally timescale-preserving reaction coordinate for the dock-lock process to a fixed pre-formed fibril and show that it exhibits strong correlation with the mean native hydrogen-bond distance. These results pave the way for a comprehensive model reduction and multi-scale analysis of amyloid fibrillation processes. Graphic Abstract


2021 ◽  
Author(s):  
JEJOON YEON ◽  
SANJIB C. CHOWDHURY ◽  
CHAITANYA M. DAKSHA ◽  
DONATO BELMONTE ◽  
ADRI VAN DUIN ◽  
...  

New ReaxFF parameters are developed for the description of Mg/Al/Si/O interaction for the Magnesium Aluminosilicate (MAS) glass structure. The training set contains energy curves from equation of state for various Mg/Al/Si/O crystals, valence angle and bond distance scan, and heat of formation for the Mg/Al/Si/O interactions. A semi-automated Genetic Algorithm assisted by Artificial Neural Network is applied for this parametrization. Validation efforts showed the current ReaxFF parameter set can describe the atomistic structure and property of tectosilicate MAS glass including S-glass. Estimated quasi-static modulus of S-glass structure matches well with experimental value. Analysis shows the key of high modulus of S-glass is numerous Mg-BO (Bridge Oxygen) interactions across the Mg-O-AlSi structure. In addition, atomistic origin of high ductility and progressive failure of S-glass is derived from the reconstruction of the atomic structure, forming Mg-BO-Si interactions that delays fracture formation.


2021 ◽  
pp. 2150033
Author(s):  
Rajni Vats ◽  
Rachna Ahlawat

This work reports about annealing time effect on structural and optical properties of pure and Dy[Formula: see text]-doped CeO2 nanocrystallites. The nanopowders with an average grain size 13–15[Formula: see text]nm are successfully synthesized via a conducive and neoteric Pechini-type sol–gel technique. Surface morphology, composition, band gap and photoluminescence properties of the prepared samples are examined by multifarious characterization techniques like Rietveld refinement, FESEM, HRTEM, FTIR, UV–Vis spectroscopy and PL. The effects of annealing time on structural parameters including lattice parameter, bond distance, bond angle, strain, crystallite size and texture coefficient are computed for all prepared samples which are further ensured by Rietveld refinement. In absorption spectra, blue shift in the band gap of as-prepared samples has been observed due to well-known quantum size effect, however, red shift is noticed in further annealed samples. PL emission peaks are observed in violet, blue and green regions that are devoted to various defect levels and color centers such as F, F[Formula: see text], F[Formula: see text], etc. It is suggested that defects like oxygen vacancies play vital role in tailoring the band gap of prepared samples and therefore enhance its utility in photonics and oxygen storage appliances.


Sign in / Sign up

Export Citation Format

Share Document