irradiation parameter
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Alexander S. Lelekov ◽  
Rudolf P. Trenkenshu ◽  
Tatyana M. Novikova

The paper presents a modified mathematical model of light-dependent chlorophyll concentration in the microalgae biomass. The basic model is based on the concept of biomass as a sum of reserve and structural components. Considering that part of the structural biomass can turn into a reserve, the minimum irradiation parameter (“photosynthesis compensation point”) is added to the basic equation. Verification of the model on experimental data for turbidostat cultures of Tetraselmis viridis and Arthrospira platensis allowed us to evaluate species-specific coefficients. The obtained coefficient values are similar for both species. The share of chlorophyll in structural biomass is about 2 %, the maximum share of structural forms of biomass is 84 %, the economic conversion factor of reserve biomass to structural is 80–90 %, and the maximum specific rate of photosynthesis is 14–20 times higher than the rate of endogenous consumption of biomass.


1999 ◽  
Vol 62 (9) ◽  
pp. 1024-1032 ◽  
Author(s):  
SUZANNE J. C. van GERWEN ◽  
FRANK M. ROMBOUTS ◽  
KLAAS van't RIET ◽  
MARCEL H. ZWIETERING

This paper provides approximate estimates for the irradiation parameter D10 to globally predict the effectiveness of any irradiation process. D10 is often reported to depend on many specific factors, implying that D10 cannot be estimated without exact knowledge of all factors involved. For specific questions these data can of course be useful but only if the conditions reported exactly match the specific question. Alternatively, this study determined the most relevant factors influencing D10, by quantitatively analyzing data from many references. The best first step appeared to be a classification of the data into vegetative bacteria and spores. As expected, spores were found to have significantly higher D10 values (average 2.48 kGy) than vegetative bacteria (average 0.762 kGy). Further analyses of the vegetative bacteria confirmed the expected extreme irradiation resistance of nonpathogenic Deinococcus radiodurans (average 10.4 kGy). Furthermore the analysis identified Enterococcus faecium, Alcaligenes spp., and several members of the Moraxella–Acinetobacter group as having very high resistance at very low temperatures (average 3.65 kGy). After exclusion of high- and low-resistance spores and some specific conditions showing relevant high or low D10 values, the average for spores was estimated to be 2.11 kGy. For vegetative bacteria this average was estimated to be 0.420 kGy. These approximate estimates are not definite, as they depend on the data used in the analyses. It is expected that inclusion of more data will not change the estimates to a great extent. The approximate estimates are therefore useful tools in designing and evaluating irradiation processes.


Sign in / Sign up

Export Citation Format

Share Document