engine cycle
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 35)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 7 ◽  
pp. 374-379
Author(s):  
Michael Fratita ◽  
Florin Popescu ◽  
Jorge Martins ◽  
F.P. Brito ◽  
Tiago Costa ◽  
...  

2021 ◽  
Author(s):  
Józef Pszczółkowski Pszczółkowski

The process of cylinder charge – air sucked into the cylinder – transformation during engine start-up phase is characterized. Heat exchange and air flow through piston-cylinder group leakage processes are described as factors influencing the gas thermodynamic parameters. The Woschni formula based on similarity theory was finally used as equation describing heat transfer in combustion engines cylinder. The computational model for cylinder charge parameters in the whole engine cycle during its starting at low temperature is presented. Some taken assumptions and characteristics of partial processes resulting from the computations are shown. There are indicated the possibilities of using the model at internal combustion engine diagnostic process.


Energy ◽  
2021 ◽  
pp. 121769
Author(s):  
Cong Wang ◽  
Xuanfei Yu ◽  
Xin Pan ◽  
Jiang Qin ◽  
Hongyan Huang

Author(s):  
Glauco Maciel

Proteins are involved in numerous cellular activities such as transport and catalysis. Misfolding during biosynthesis and malfunctioning as a molecular machine may lead to physiological disorders and metabolic problems. Protein folding and mechanical work may be viewed as thermodynamic energetically favorable processes in which stochastic nonequilibrium intermediate states may be present with conditions such as thermal fluctuations. In my opinion, measuring those thermal fluctuations may be a way to access the energy exchange between the protein and the physiological environment and to better understand how those nonequilibrium states may influence the misfolding/folding process and the efficiency of the molecular engine cycle. Here, I discuss luminescence thermometry as a possible way to measure those temperature fluctuations from a single molecule experimental perspective with its current technical limitations and challenges.


2021 ◽  
Author(s):  
Ziyu Zhang ◽  
Li Zhou ◽  
Xiaobo Zhang ◽  
Zhanxue Wang

2021 ◽  
Vol 239 ◽  
pp. 114184
Author(s):  
Cong Wang ◽  
Chan Ha ◽  
Xin Pan ◽  
Jiang Qin ◽  
Hongyan Huang

2021 ◽  
Author(s):  
Emmanouil Alexiou ◽  
Zinon Vlahostergios ◽  
Christina Salpingidou ◽  
Fabian Donus ◽  
Dimitrios Misirlis ◽  
...  

Abstract Aiming in the direction of designing high efficiency aircraft engines, various concepts have been developed in recent years, among which is the concept of the intercooled and recuperative aero engine (IRA engine). This concept is based on the use of a system of heat exchangers (recuperator) mounted inside the hot-gas exhaust nozzle, as well as a system of heat exchangers (intercooler) mounted between the intermittent-pressure compressor (IPC) and the high-pressure compressor (HPC) compressor modules. Through the operation of the system of recuperator module, the heat from the exhaust gas, downstream the LP turbine of the aero engine is driven back to the combustion chamber. Thus, the preheated air enters the engine combustion chamber with increased enthalpy, providing higher combustion efficiency and consequently reduced thrust specific fuel consumption (TSFC) and low-level emissions. Additionally, by integrating the intercooler module between the compressor stages of the aero engine, the compressed air is cooled, leading to less required compression work to reach the compressor target pressure and significant improvements can be achieved in the overall engine efficiency and the specific fuel consumption hence, contributing to the reduction of CO2 and NOx emissions. The present work is focused on the optimization of the performance characteristics of an intercooler specifically designed for aero engine applications, working cooperatively with a novel design recuperator module targeting the reduction of specific fuel consumption and taking into consideration aero engine geometrical constraints and limitations for two separate operating scenarios. The intercooler design was based on the elliptically profiled tubular heat exchanger which was developed and invented by MTU Aero Engines AG. For the specific fuel consumption investigations, the Intercooled Recuperated Aero engine cycle that combines both intercooling and recuperation was considered. The optimization was performed with the development of an intercooler surrogate model, capable to incorporate major geometrical features. A large number of intercooler design scenarios was assessed, in which additional design criteria and constraints were applied. Thus, a significantly large intercooler design space was covered resulting to the identification of feasible designs providing beneficial effect on the Intercooled Recuperated Aero engine performance leading to reduced specific fuel consumption, reduced weight and extended aircraft range.


Sign in / Sign up

Export Citation Format

Share Document