pressure compressor
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 65)

H-INDEX

12
(FIVE YEARS 2)

Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 330
Author(s):  
Jasem Alqallaf ◽  
Joao A. Teixeira

Degradation of compressors is a common concern for operators of gas turbine engines (GTEs). Surface roughness, due to erosion or fouling, is considered one of the major factors of the degradation phenomenon in compressors that can negatively affect the designed pressure rise, efficiency, and, therefore, the engine aero/thermodynamic performance. The understanding of the aerodynamic implications of varying the blade surface roughness plays a significant role in establishing the magnitude of performance degradation. The present work investigates the implications due to the degradation of the compressor caused by the operation in eroding environments on the gas turbine cycle performance linking, thereby, the compressor aerodynamics with a thermodynamic cycle. At the core of the present study is the numerical assessment of the effect of surface roughness on compressor performance employing the Computational Fluid Dynamics (CFD) tools. The research engine test case employed in the study comprised a fan, bypass, and two stages of the low pressure compressor (booster). Three operating conditions on the 100% speed-line, including the design point, were investigated. Five roughness cases, in addition to the smooth case, with equivalent sand-grain roughness (Ks) of 15, 30, 45, 60, and 150 µm were simulated. Turbomatch the Cranfield in-house gas turbine performance simulation software, was employed to model the degraded engine performance. The study showed that the increase in the uniform roughness is associated with sizable drops in efficiency, booster pressure ratio (PR), non-dimensional mass flow (NDMF), and overall engine pressure ratio (EPR) together with rises in turbine entry temperature (TET) and specific fuel consumption (SFC). The performance degradation evaluation employed variables such as isentropic efficiency (ηis), low pressure compressor (LPC) PR, NDMF, TET, SFC, andEPR. The variation in these quantities showed, for the maximum blade surface degradation case, drops of 7.68%, 2.62% and 3.53%, rises of 1.14% and 0.69%, and a drop of 0.86%, respectively.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jerome de Laborderie ◽  
Cedric Babin ◽  
Fabrizio Fontaneto

Purpose The present paper aims at evaluating the lattice Boltzmann method (LBM) on a high-subsonic high-pressure compressor stage at nominal regime. Design/methodology/approach The studied configuration corresponds to the H25 compressor operated in a closed-loop test rig at the von Karman Institute. Several operating points are simulated with LBM for two grids of successive refinements. A detailed analysis is performed on the time-averaged flow predicted by LBM, using a comparison with experimental and existing RANS data. Findings The finest grid is found to correctly predict the mean flow across the machine, as well as the influence of the rotor tip gap size. Going beyond time-averaged data, some flow analysis is performed to show the relevance of such a high-fidelity method applied to a compressor configuration. In particular, vortical structures and their evolution with the operating points are clearly highlighted. Spectral analyses finally hint at a proper prediction of tonal and broadband contents by LBM. Originality/value The application of LBM to high-speed turbomachinery flows is very recent. This paper validates one of the first LBM simulations of a high-subsonic high-pressure compressor stage.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042055
Author(s):  
D Yu Strelets ◽  
S A Serebryansky ◽  
M V Shkurin

Abstract In this paper, the possibilities of improving the traction and economic characteristics of a by-pass turbojet engine of a high-speed passenger aircraft due to minimal modifications of the high-pressure compressor. A thermodynamic model of the investigated engine of a new design in a three-dimensional layout was formed using an automated multicriteria optimization process. A computational assessment of the change in the characteristics of compressor modifications is carried out based on a numerical model of gas dynamics.


2021 ◽  
Vol 6 (2) ◽  
pp. 50-55
Author(s):  
Wildan Sofary Darga ◽  
Edy K. Alimin ◽  
Endah Yuniarti

Exhaust Gas Temperatue is an parameter where the hot gases’s temperature leave the gas turbine. Exhaust gas temperature margin is the difference between highest temperature at take off phase with redline on indicator (???????????? ???????????????????????? °????=???????????? ????????????????????????????−???????????? ???????????????? ????????????). EGTM is one of any factor to determine engine performance. A good perfomance of an engine when it has a big margin (EGTM), during operation of an engine the EGTM could decrease untill 0 (zero). So many factors could affect EGTM deteroration there are: distress hardware such as airfoil erosion, leak of an airseals, and increase of clearance between tip balde and shroud. Increase of clearance happens in high pressure compressor rotor clearance. In CFM56-7 have 9 stage(s) of high pressure compressor and each stage give the EGT Loses. The calculation of EGT Effect/Losses is actual celarance – minimum clearance x 1000 x EGT Effect °C, where actual clearance define by the substraction of outside diameter’s rotor with inside diameter’s shroud, minimum clearance define in the manual, 1000 is adjustment from mils/microinch to inch, and EGT Effect is temperature that define in the manual. The analysist had done with 6 (six) engine serial number and proceed by corelation that shown linkage between clearance and EGT Effect, the corelation is strong shown the result of corelation (r) is 0.994275999 or nearest 1.


2021 ◽  
pp. 1-39
Author(s):  
Apostolos Spanelis ◽  
A Duncan Walker

Abstract This paper uses Computational Fluid Dynamics to investigate the effect of an engine handling bleed situated on the outer casing downstream of the last rotor stage of a low-pressure compressor and upstream of the outlet guide vane and S-shaped duct. The model, validated against existing experimental data, utilized an unsteady RANS solver incorporating a Reynolds stress closure to examine the unsteady component interactions. The results showed that at bleed rates less than 25% of the mainstream flow the bleed effects were negligible. However, at higher bleed rates performance was significantly degraded. A uniform flow extraction hypothesis was employed to separate the positional bias effects from the bulk flow diffusion. This revealed that the bleed-induced radial flow distortion can significantly affect the OGV loading distribution, which thereby dictates the position and type of stall within the OGV passage. Extraction of the rotor tip leakage via the shroud bleed, combined with the radial flow distortion, contributed to a 28% reduction in duct loss at 10% bleed and up to 50% reduced loss at 25% bleed. The actual amount of flow required to be extracted for an OGV stall to develop, was 30%. That was independent of the bleed location and the type of stall. For bleeds up to 20%, the S-duct displayed a remarkable resilience and consistency of flow variables at duct exit. However, a stalled OGV deteriorated the radial flow uniformity that was presented to the high-pressure compressor.


Author(s):  
Nitya Kamdar ◽  
Fangyuan Lou ◽  
Nicole L. Key

Abstract In the first part of the paper, the influence of the hub leakage flow on compressor performance and its interactions with the primary flow were investigated. While the impact of hub leakage flow on the primary passage is readily available in the open literature, details inside the cavity geometry are scarce due to the difficulties in instrumenting that region for an experiment or modeling the full cavity geometry. To shed light on this topic, the flow physics in the stator cavity inlet and outlet wells were investigated in the present part of the paper to understand the flow path of the leakage fluid and windage heating within the cavity using a coupled CFD model with inclusion of the stator cavity wells for the Purdue 3-Stage (P3S) Axial Compressor, which is representative of the rear stages of a high-pressure-compressor in core engines.


Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 54
Author(s):  
Yury Ravikovich ◽  
Alexander Arkhipov ◽  
Alexander Shakhov ◽  
Timur Erofeev

Computational and experimental studies have been carried out to evaluate the robustness and durability of components produced of polymer composite materials (PCM), as a part of the modernization of the low-pressure compressor (LPC) of the engine for the regional aircraft. For a preliminary assessment of the static and dynamic strength of the parts, a series of three-dimensional finite element calculations and tests of laboratory specimens, structural elements cut from finished parts, have been performed. Testing the laboratory samples made it possible to compare the obtained mechanical properties with the properties declared by PCM suppliers and to conduct a mor e correct assessment of the safety margins of the parts. To decide whether to install parts on the engine, fatigue and erosion tests of the structural elements cut from the finished parts were carried out. The final decision on the performance of the PCM parts was made after testing them as part of the upgraded LPC on the engine. The criterion for evaluating the erosion resistance of PCM parts has been introduced, which makes it possible to assess their performance during operation.


Sign in / Sign up

Export Citation Format

Share Document