specific fuel consumption
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 110)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 21 (4) ◽  
pp. 289-301
Author(s):  
Mohanad Aldhaidhawi ◽  
Oras Khudhayer Obayes ◽  
Muneer Najee

In the present work, the direct-injection petrol engine (GDI) combustion, emissions and performance at different engine speeds (1500, 2000, 2500 and 3000 rpm) with a constant throttle position have been studied. The fuel considered in this work is liquid petroleum gas (LPG) and gasoline. The software adopted in all simulations by the AVL BOOST 2016. A Hyundai 2.0 liter, 16 valves and 4 cylinders engine with a compression ratio 17.5:1 is used. The effect of several inlet air temperatures (0, 10, 20, 30, 40 and 50 oC) on the engine performance, combustion and emissions are also studied. The results show that the increase in the inlet air temperature leading to increase the peak fire temperature, brake specific fuel consumption (BSFC) and nitrogen oxide (NOx). However, this process results in a reduction in the peak fire pressure, combustion period (duration), brake power and brake torque. The maximum fire temperature and maximum specific fuel consumption can be achieved when the engine speed is 3000 rpm and the inlet air temperature is 50 ºC.


Author(s):  
Muhammad Zahid ◽  
Naseer Ahmad

To fulfil future demand for energy and to control pollution, a power-split hybrid electric vehicle is a promising solution combining attributes of a conventional vehicle and an electric vehicle. Since energy is available from two subsystems i.e, engine and battery, there is the freedom to manage it optimally. In this work, model predictive control strategy, that has the constraint handling which makes it a better choice over other strategies for efficient energy management of hybrid electric vehicles. A detailed mathematical model of the power split configured hybrid electric vehicle is developed that encompasses the engine, planetary gear, motor/generator, inverter, and battery. An interior-point optimizer based-nonlinear model predictive control strategy is applied to the developed model by incorporation of operational constraints and cost function. The objective is to curtail fuel consumption while the battery’s state of charge should be maintained within predefined limits. The complete developed model was simulated in MATLAB for motor, generator, engine speed, and battery SoC. Computed specific fuel consumption from the proposed MPC during the NEDC and the HWFET cycles are 4.356liters/100km and 2.474 litres/100 km, respectively. These findings are validated by the rule-based strategy of ADVISOR 2003 that provides 4.900 litres/100 km and 3.600 litres/100 km over the NEDC and the HWFET cycles, respectively. This indicates that the proposed MPC shows 11.11 % and 31.26 % improvement in specific fuel consumption in the NEDC and HWFET drive cycles respectively.


Author(s):  
M.V. Cherniavskyi

The structure of electricity cost formation for consumers, including depending on the cost of TPP generation, «green» energy and other sources, is investigated, and the main conditions of the efficient regulatory function fulfillment in the power system by thermal power generation in the conditions of Ukraine's course on carbon-free energy are formulated. It is shown that excessive electricity losses in networks and, especially, accelerated increase of the share of «green» generation, much more expensive than nuclear, hydro and thermal, mainly contribute to the growth of electricity costs for non-household consumers and the need to raise tariffs for the population. This accelerated increase directly contradicts the Paris Climate Agreement, according to which plans to reduce Ukraine’s greenhouse gas emissions must be developed taking into account available energy resources and without harming its own economy. The dependences of the specific fuel consumption on the average load and the frequency of start-stops of units are found and it is shown that the increased specific fuel consumption on coal TPPs is an inevitable payment for their use as regulating capacities of UES of Ukraine. In this case, the higher the proportion of «green» generation and a smaller proportion of generating thermal power plants, especially increasing specific fuel consumption. It is proved that in the conditions of growth of the share of «green» generation in Ukraine the share of production of pulverized coal thermal power plants should be kept at the level of not less than 30 % of the total electricity generation. It is substantiated that a necessary condition for coal generation to perform a proper regulatory role in the power system is to introduce both environmental and technical measures, namely — reducing the suction of cold air to the furnace and other boiler elements, restoring condensers and cooling systems, etc. An important factor in reducing the average level of specific fuel consumption is also the reduction of coal burn-out at thermal power plants, where it still remains significant, due to the transfer of power units to the combustion of bituminous coal concentrate. Bibl. 12, Fig. 5, Tab. 5.


Author(s):  
Sudarsono ◽  
Anak Agung Putu Susastriawan ◽  
I Gusti Badrawada ◽  
Hary Wibowo ◽  
Dwi Laras Indrajati

In order to utilize a raw biogas as a fuel of generator set (gen-set), it is important to figure out optimum operating parameter of the gen-set, i.e. compression ratio. The present work aims to investigate the effect of compression ratio on performance of 3 kW gen-set fuelled with raw biogas and to obtain optimum compression ratio for operation of the gen-set on raw biogas. The gen-set used in the present work is bi-fuel engine, i.e. fuelled with gasoline or LPG. The performance of the engine fuelled with raw biogas in terms of brake power, brake torque, brake specific fuel consumption, and thermal efficiency is evaluated at compression ratio of 7.5, 8.5, 9.5, and 10.5. The work is carried out under electrical load of 240, 420, and 600 Watt. The result indicates that compression ratio affects the rotational speed, brake power, brake torque, brake specific fuel consumption, and thermal efficiency of the gen-set. Optimum compression ratio for the gen-set fuelled with raw biogas is 9.5. At the optimum compression ratio, maximum brake power, brake torque, and thermal efficiency of are 450.37 W, 1.66 Nm, and 46.93%, respectively. Minimum brake specific fuel is 0.59 kg/kWh at the optimum compression ratio.


2021 ◽  
Vol 9 (4A) ◽  
Author(s):  
İlker Örs ◽  
◽  
Murat Ciniviz ◽  
Bahar Sayin Kul ◽  
Ali Kahraman ◽  
...  

In this study, it was aimed to investigate the effects of a diesel-biodiesel blend (B20) and a diesel-biodiesel-bioethanol blend (BE5) on combustion parameters in addition to engine performance and exhaust emissions compared with diesel fuel. Parameters included in the evaluation was brake specific fuel consumption, brake thermal efficiency, CO, CO2, HC, NOx, smoke opacity emissions and finally cylinder pressure, heat release rate, ignition delay, some key points of the combustion phases such as start of ignition, start of combustion, CA50 and CA90 and combustion duration. Engine tests were conducted at different injection pressures of 170 bar, 190 bar, which is the original injection pressure, and 220 bar by the engine being loaded by 25, 50, 75 and 100% for the assessment of engine performance and exhaust emissions. For combustion evaluation, the data obtained at 1400 rpm, maximum torque-speed, and 2800 rpm, maximum power-speed were used, while the injection pressures were set to 170, 190 and 220 bar under full load condition. According to test results, the better performance characteristics, exhaust emissions and combustion behaviour of engine were obtained with the use of BE5 at high injection pressure. So, BE5 fuel improved brake specific fuel consumption by about 7% and brake thermal efficiency by about 6% compared to B20. In addition, while the emission values of BE5 gave better results than diesel fuel, it reduced the NOx and smoke emissions of B20 by approximately 1.4% and 6.4% respectively. Moreover, it has achieved a reduction in smoke emission of up to 45% compared to diesel fuel.


2021 ◽  
Vol 927 (1) ◽  
pp. 012027
Author(s):  
Tri Susilo Wirawan ◽  
Andi Erwin Eka Putra ◽  
Nasruddin Aziz

Abstract The consumption of fossil fuels raises major issues, such as energy availability and environmental preservation. In order to minimize these issues, it is important to propose alternative fuel. Alternative fuel to be proposed should be easy to apply current type of enginethat do not require engine modification and environmentally friendly. This study aims to determine the effect of addition of methanol as a non-fossil fuel mixture into RON 88 gasoline. The ratio of mixture is 80% of RON 88 gasoline and 20% of methanol. We conducted the experiment to determine the mixture effect on fuel properties, engine performance, engine vibration, engine noise, and exhaust emissions. The engine simulation utilized the TV-1 engine (Kirloskar Oil Engines Ltd.). The results show that the engine performance of fuel mixed with methanol tends to be better even though the fuel consumption is higher, the highest specific fuel consumption in the methanol mixture is 2.9 kg/kwh while the specific fuel consumption for gasoline without a methanol mixture is 2.64 kg/kwh. The largest engine vibration occurred in the measurement of the vertical radial direction of 36 m/s2 and 34 m/s2 for with methanol and without the addition of methanol, at 1200 rpm to 1600 rpm respectively. Engine noise is higher for fuel mixed with methanol with the largest value of 86.4 dB compared to 85.7 dB for pure gasoline. Lower emission levels for fuel blended with methanol, where the highest HC emission for pure gasoline is 32 ppm while fuel mixed with methanol is 17 ppm.


2021 ◽  
Vol 9 (11) ◽  
pp. 846-855
Author(s):  
Adihou C. Wilfrid ◽  
◽  
Awanto Christophe ◽  
Milohin G. Gladys ◽  
Houngan C. Aristide ◽  
...  

The present work concerns the modification of the grid of the Nansu stove, used in many households in Africa and in particular in Benin. The performance of the stove obtained (modified Nansu) was estimated and compared on the one hand with that of the corresponding reference stove and on the other hand with that of the ordinary Nansu stove. To do this, the Controlled Cooking Test (CCT) was used to determine the specific fuel consumption and cooking time for three dishes, namely rice, beans and voandzou. The results of these tests show that the modified Nansu fireplace is significantly more economical, in terms of fuel consumption and cooking time, compared to the ordinary Nansu fireplace. The savings made by the modified Nansu stove compared to the ordinary Nansu stove are 34.57% to 64.31% in specific consumption and 9.42% to 37.81% in cooking time depending on the type of dish.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1984
Author(s):  
Yanhui Zhang ◽  
Yunhao Zhong ◽  
Jie Wang ◽  
Dongli Tan ◽  
Zhiqing Zhang ◽  
...  

In this paper, biodiesel was used as an alternative fuel to investigate the combustion and emission characteristics of a four-stroke diesel engine, in terms of cylinder pressure, heat release rate, cylinder temperature, brake thermal efficiency, brake specific fuel consumption, nitrogen oxide, soot, carbon monoxide, and hydrocarbon. Firstly, a diesel engine cylinder model was developed by AVL-Fire software coupled with CHEMKIN code to simulate the injection and combustion of biodiesel with a kinetic mechanism with 106 species and 263 reactions. Then, the simulation model was validated by experimental results under 100% and 50% load conditions and used to simulate the combustion process of a diesel engine fueled with pure diesel, biodiesel, and biodiesel–diesel blends with 10%, 20%, 30% biodiesel by volume, respectively. The results showed that the brake specific fuel consumption increased with the increase of mixed biodiesel ratio. The brake specific fuel consumptions of B10, B20 and B30 increased by 1.1%, 2.3% and 3.3%, respectively, compared with that of D100. The combustion and emission characteristics of the diesel engine are improved. Therefore, biodiesel can be used as an alternative fuel for the diesel engine. The diesel–biodiesel fuel can improve the combustion and emission characteristics of the diesel engine.


2021 ◽  
Vol 926 (1) ◽  
pp. 012035
Author(s):  
A Puspawan ◽  
N I Supardi ◽  
A Suandi ◽  
H R Samosir ◽  
Indarto

Abstract Bioethanol is ethanol produced from glucose fermentation followed by the distillation process. The purpose of this study was to examine the performance of gasoline-fueled motors using bioethanol fuel mixed with pertamax (RON 90) and pertalite (RON92) fuels with a mixed percentage of B0%, B5%, B10%, B15%, and B20%. In this research, bioethanol is made from basic ingredients of coconut roomie (Cocos nucifera), which is fermented then continued with the distillation process to obtain bioethanol with a purity level of 80%. Bioetahnol is used as a fuel mixture using a gasoline fuel motor. The results of testing the mixture of bioethanol B20% and pertamax (RON 90) fuel with the highest torque is 11.94 Nm at rotation 2600 rpm. Bioethanol B20% and pertalite (RON 92) fuel with the highest torque is 11.79 Nm at rotation 2600 rpm. Bioethanol B20% and pertamax (RON 90) fuel the highest initial power is 4.58 hp at rotation 2900 rpm. Bioethanol B20% and pertalite (RON 92) fuel’s the highest power is 4.52 hp at rotation 2900 rpm. Bioethanol B20% and Pertamax (RON 90) fuel shows that the lowest specific fuel consumption is 0.28 kg/hp.h. Bioethanol B20% and pertalite (RON 92) fuel the lowest specific fuel consumption pertalite is 0.29 kg/hp.h. The greater the percentage of in pertamax (RON 90) fuel and pertalite (RON 92) fuel, the specific fuel consumption will be more efficient. In the mixture of pertamax (RON 90) fuel and bioethanol B20% is the largest value torque and power, but specific fuel consumption is the lowest.


Sign in / Sign up

Export Citation Format

Share Document