algebra part
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1975
Author(s):  
Alfons Van Daele ◽  
Shuanhong Wang

Let (A,Δ) be a weak multiplier Hopf algebra. It is a pair of a non-degenerate algebra A, with or without identity, and a coproduct Δ:A⟶M(A⊗A), satisfying certain properties. In this paper, we continue the study of these objects and construct new examples. A symmetric pair of the source and target maps εs and εt are studied, and their symmetric pair of images, the source algebra and the target algebra εs(A) and εt(A), are also investigated. We show that the canonical idempotent E (which is eventually Δ(1)) belongs to the multiplier algebra M(B⊗C), where (B=εs(A), C=εt(A)) is the symmetric pair of source algebra and target algebra, and also that E is a separability idempotent (as studied). If the weak multiplier Hopf algebra is regular, then also E is a regular separability idempotent. We also see how, for any weak multiplier Hopf algebra (A,Δ), it is possible to make C⊗B (with B and C as above) into a new weak multiplier Hopf algebra. In a sense, it forgets the ’Hopf algebra part’ of the original weak multiplier Hopf algebra and only remembers symmetric pair of the source and target algebras. It is in turn generalized to the case of any symmetric pair of non-degenerate algebras B and C with a separability idempotent E∈M(B⊗C). We get another example using this theory associated to any discrete quantum group. Finally, we also consider the well-known ’quantization’ of the groupoid that comes from an action of a group on a set. All these constructions provide interesting new examples of weak multiplier Hopf algebras (that are not weak Hopf algebras introduced).


Author(s):  
Shuanhong Wang ◽  
Alfons Van Daele

Let $(A,\Delta)$ be a {\it weak multiplier Hopf algebra} as introduced in [VD-W3] (see also [VD-W2]). It is a pair of a non-degenerate algebra $A$, with or without identity, and a coproduct $\Delta$ on $A$, satisfying certain properties. If the algebra has an identity and the coproduct is unital, then we have a Hopf algebra. If the algebra has no identity, but if the coproduct is non-degenerate (which is the equivalent of being unital if the algebra has an identity), then the pair would be a multiplier Hopf algebra. If the algebra has an identity, but the coproduct is not unital, we have a weak Hopf algebra. In the general case, we neither assume $A$ to have an identity nor do we assume $\Delta$ to be non-degenerate and so we work with a {\it genuine} weak multiplier Hopf algebra. It is called {\it regular} if its antipode is a bijective map from $A$ to itself. \snl In this paper, we {\it continue the study of weak multiplier Hopf algebras}. We recall the notions of the source and target maps $\varepsilon_s$ and $\varepsilon_t$, as well as of the source and target algebras. Then we investigate these objects further. Among other things, we show that the canonical idempotent $E$ (which is eventually $\Delta(1)$) belongs to the multiplier algebra $M(B\ot C)$ where $B=\varepsilon_s(A)$ and $C=\varepsilon_t(A)$ and that it is a {\it separability idempotent} (as studied in [VD4.v2]). If the weak multiplier Hopf algebra is regular, then also $E$ is a {\it regular} separability idempotent. \snl We also consider {\it special cases and examples} in this paper. In particular, we see how for any weak multiplier Hopf algebra $(A,\Delta)$, it is possible to make $C\ot B$ (with $B$ and $C$ as above) into a new weak multiplier Hopf algebra. In a sense, it forgets the 'Hopf algebra part' of the original weak multiplier Hopf algebra and only remembers the source and target algebras. It is in turn generalized to the case of any pair of non-degenerate algebras $B$ and $C$ with a separability idempotent $E\in M(B\ot C)$. We get another example using this theory associated to any discrete quantum group (a multiplier Hopf algebra of discrete type with a normalized cointegral). Finally we also consider the well-known 'quantization' of the groupoid that comes from an action of a group on a set. All these constructions provide interesting new examples of weak multiplier Hopf algebras (that are not weak Hopf algebras).


Sign in / Sign up

Export Citation Format

Share Document