high gold content
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

2018 ◽  
Vol 3 (2) ◽  
pp. 54-73
Author(s):  
Elzio Da Silva Barboza ◽  
Anderson Costa dos Santos ◽  
Carlos José Fernandes ◽  
Mauro César Geraldes

The Paraguay Belt is composed by sediments deposited due to extensional events followed by inversion with deformation and magmatism and lastly collision of the Amazonian Craton and Paranapanema Block. The marine sedimentation, with Neoproterozoic ages, should have occurred in a continental shelf region, at about 800-550 Ma, when the closing of many oceans gave place to the amalgamation of the Gondwana supercontinent. Three areas were selected for this study which configuration define the perpendicular profile of the Paraguay Belt and allow the characterization of the main regional structures.The structural analysis in the sites here reported and surrounding areas allow suggesting that three deformational events are recorded in the rocks of this region. The sedimentary bedding S0, marked by alternations of dark gray and whitish coloration in the seritic phyllites is folded and the axial plane (Sn) is marked by a cleavage of ardosian. These surfaces are cut by two other deformations, Sn + 1 surface that plunges at high angles to SE as fracture cleavage and Sn + 2 that is orthogonal to the previous deformations and has NW-SE direction with vertical dips, where sometimes occurs quartz veins with high gold content. The Paraguay Belt fan geometry observed in the Sn foliation was developed during the closing of a Brazilian ocean that evolved between the Paranapanema Block and the Amazonian Craton. ResumoO Cinturão Paraguai é composto por sedimentos depositados durante eventos extencionais  seguidos de inversão com deformação e magmatismo e, por último, colisão do Craton Amazônico e do Bloco Paranapanema. A sedimentação marinha, com idades Neoproterozóicas, ocorreu  em uma região de plataforma continental, entre 800-550 Ma, quando o fechamento de muitos oceanos deu lugar à fusão do supercontinente Gondwana. Três áreas foram selecionadas para este estudo cuja configuração define um  perfil perpendicular do Cinturão do Paraguai e permite a caracterização das principais estruturas regionais.A análise estrutural nos locais aqui relatados e áreas adjacentes permite sugerir que as rochas do orógeno passou por três eventos deformacionais. O acamamento  sedimentar S0, marcado por alternâncias de coloração cinza-escura e esbranquiçada nos filitos e siltitos, é dobrado e o plano axial (Sn) é marcado por uma clivagem ardosiana. Estas superfícies são cortadas por outras duas deformações, Sn + 1 que mergulha em ângulos elevados para SE como clivagem de fratura e Sn + 2 que é ortogonal às deformações anteriores e tem direção NW-SE com mergulhos verticais, onde às vezes ocorrem veios de quartzo com alto teor de ouro. A geometria em leque  do Cinturão Paraguay observada na foliação de Sn foi desenvolvida durante o fechamento de um oceano brasileiro que evoluiu entre o Bloco Paranapanema e o Craton Amazônico.


2013 ◽  
Vol 19 (S4) ◽  
pp. 139-140
Author(s):  
J. Cruz ◽  
V. Corregidor ◽  
L.C. Alves ◽  
P.A. Carvalho ◽  
M. Fonseca

A gold solidus of Valentinian I, Emperor of Rome (A.D. 364-375) shown in Figure 1, and belonging to a private collection, was subjected to material and stylistic analysis, in order to ascertain about its authenticity. Due to the rarity of such a coin, only non-destructive analytical techniques were used, namely Scanning Electron Microscopy (SEM), Particle Induced X-ray Emission (PIXE), electrical resistivity and optical microscopy.Examination by SEM revealed that, in common with coins minted by this emperor, the solidus was die-struck as evidenced by the surface flow lines indicating metal movement under the dies (Figure 2). Wear traces presented an unorganized pattern. The coin was also examined for signs of stress-corrosion cracking but no evidence of this were found. The coin also shows traces of what appear to be soil residues; small quantities of these residues can also be seen in porosities in the coin face (arrow in Figure 3).Analysis by PIXE showed that the coin was made from an alloy of gold (97.9%), silver (2.0%) and copper (0.1%) (Figure 4). The high gold content is likely to be overestimated due to surface depletion of the silver and particularly the copper, which is caused by slight dissolution of these more reactive metals in the burial environment. Nevertheless, this effect is usually small and in agreement with other solidus from Valentiniano I. Also, the high gold content may lie behind the lack of stress-corrosion cracking.The presence of platinum group element (PGE) inclusions is, in some cases, indicative of alluvial gold provenience. Both, optical microscopy and PIXE, were used to detect them but it was not possible to identify their presence. Typically, the concentration of these elements is in the order of ppm, although for this specific period different values have been reported. Considering the experimental conditions used (2 MeV accelerated proton beam and a 50 μm Mylar foil in front of the X-ray detector) the limit of detection of the PIXE technique is close to the expected trace concentration. More energetic proton beam (>3MeV) or the use of specific filter for the X-ray signal in the low energy region, i.e. Zinc foil 75 μm thick, are the future experiments to be carried out in order to detect the presence of such characteristics PGE elements.In order to understand the presumable surface gold enrichment, electrical conductivity measurements were used. The values obtained (1.50-1.56)x1017 S/m show a lower conductivity as compared with the reference value for a 97% Au, 3% Ag alloy (3.54x1017 S/m), indicating that indeed the coin bulk has a lower gold content.As for the stylistic analysis, there is no sound agreement about the coin authenticity, but the tendency is to consider it a good one. The compositional and structural characterization of cultural heritage artefacts usually limit the number of available techniques to those considered as non-destructive and non-invasive, such the one presented in this work. This restriction also constricts and difficult the desired straight conclusions but, on the other hand, increase the multidisciplinary of the work, applying techniques usually dedicated to the material science characterization to cultural heritage.V. Corregidor acknowledges the funding support from the FCT-Ciência program. Financial support was also received through the PEST-OE/CTM-UI0084/2011 and PEST-OE/FIS/UI0275/2011 grants.


2006 ◽  
Vol 53 (4) ◽  
pp. 236-245
Author(s):  
Rebeka Rudolf ◽  
Janez Kramberger ◽  
Tjasa Zupancic-Hartner ◽  
Aleksandra Maric-Dragas ◽  
Vojkan Lazic

Introduction: Porcelain to metal fused alloys with Au content are most frequently used in dentistry. Their characteristic is high biocompatibility and well fusion to ceramics. Aim of the study: The aim of this study was to present the procedure of production and technology of developing the new dental alloy with high gold content (Au). Materials and Methods: The dental alloy was melted and cast in a vacuum-induction melting furnace. Casting was followed by subsequent thermo-mechanical treatments (the procedures of profile and polish milling, and thermal treatment) and the cutting strips into regular shapes. Testing of the new Au dental alloy included an examination of alloy?s final condition. The measurement of hardness was carried out according to standard 6507-1:1998, and static tensile testing was performed for determination of the mechanical properties. Microscopic analysis of the dental alloy and the finished metal-ceramic bridge included an observation of the polished surface, and by performing qualitative and quantitative micro-chemical analyses. Results: The mechanical properties and hardness of new dental gold alloy was: Rp0.=630 [N/mm2], Rm =710 [N/mm2], A= 9%, 170 HV and CTE (25-600?C) about 14,55?10-6K-1. Macro-inspection of the finished metalceramic bridge showed that there was no porosity. However, during scanning electron microscopic examination, one of the tested sample shows porosity in one alloy region and in the ceramic layer. Detailed examination of the ceramic layer?s surface showed that there were two types of air or gas bubbles - larger with distinct bubbles (type I) and smaller with clearly porous microstructure (type II). Conclusions: According to the results of this study, it can be concluded that this new dental alloy from Zlatarna Celje satisfied all the required standards regarding mechanical properties and hardness. The application of new dental alloy with high gold content depends on the adequate technology when firing ceramics. It is necessary to obtain accurate oxidation temperature and cooling rates of metal-ceramic restorations because, otherwise, different defects may appear.


Sign in / Sign up

Export Citation Format

Share Document