gondwana supercontinent
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
pp. 1-15
Author(s):  
Ulf Linnemann ◽  
Mandy Hofmann ◽  
Andreas Gärtner ◽  
Jessica Gärtner ◽  
Johannes Zieger ◽  
...  

Abstract In the Cadomian orogenic belt a package of glacigenic sedimentary deposits have been recently described in the Armorican Massif (Normandy, France). The Granville Tillite Member, the middle part of the upper Granville Formation, is late Ediacaran in age. Maximum depositional ages of the pre- and syn-glacial sedimentary deposits obtained by LA-ICP-MS U–Pb detrital zircon dating indicate a maximum age of 561 ± 3 Ma. Combined with geochronological data on the previously described glacial deposits in Cadomia, West Africa, Arabia and Iran, the Granville Tillite Member appears to represent an Upper Ediacaran Glacial Period in northern peri-Gondwana, clearly younger than the c. 580 Ma old Gaskiers glaciation. Detailed mapping and analysis of the depositional regime of two sections near the city of Granville are indicative of two independent glaciomarine lower and upper tillite deposits separated by a distinct conglomeratic marker horizon, evidently a massive gravel beach horizon deposited during an interglacial stage. Age spectra of detrital zircon U–Pb ages constrain the palaeogeographical position of the upper Granville Formation to the periphery of the West African Craton. Post-Gaskiers aged glaciations in Cadomia and in West Africa should be grouped into an Upper Ediacaran Glacial Period dated at c. 565 Ma. This glacial period seems not to be related to the negative δ13C Shuram–Wonoka anomaly. Sedimentary deposits formed during the Upper Ediacaran Glacial Period show a scattered distribution along the marginal orogens of the Gondwana supercontinent independent of palaeolatitude and are coupled most likely to contemporaneous orogenic processes and uplift.


2021 ◽  
Vol 9 ◽  
Author(s):  
Paula Luiza Fraga-Ferreira ◽  
Magali Ader ◽  
Sérgio Caetano-Filho ◽  
Pierre Sansjofre ◽  
Gustavo Macedo Paula-Santos ◽  
...  

The Ediacaran-Cambrian transition is marked by the diversification of metazoans in the marine realm. However, this is not recorded by the Ediacaran-Cambrian Bambuí Group of the São Francisco basin, Brazil. Containing the sedimentary record of a partially confined foreland basin system, the Bambuí strata bear rare metazoan remnants and a major carbon isotope positive excursion decoupled from the global record. This has been explained by changes in the paleogeography of the basin, which became a restricted epicontinental sea in the core of the Gondwana supercontinent, promoting episodes of shallow water anoxia. Here, we report new δ15Nbulk data from the two lowermost second-order transgressive-regressive sequences of the Bambuí Group. The results show a rise of δ15N values from +2 to +5‰ in the transgressive system tract of the basal sequence, which was deposited when the basin was connected to other marginal seas. Such excursion is interpreted as an oxygenation event in the Bambuí sea. Above, in the regressive systems tract, δ15N values vary from +2 to +5‰, pointing to instabilities in the N-cyle that are concomitant with the onset of basin restrictions, higher sedimentary supply/accommodation ratios, and the episodic anoxia. In the transgressive systems tract, the δ15N values stabilise at ∼+3.5‰, pointing to the establishment of an appreciable nitrate pool in shallow waters in spite of the basin full restriction as marked by the onset of a positive carbon isotope excursion. In sum, our data show that the N-cycle and its fluctuations were associated with variations in sedimentary supply/accommodation ratios induced by tectonically-related paleogeographic changes. The instability of the N-cycle and redox conditions plus the scarcity of nitrate along regression episodes might have hindered the development of early benthic metazoans within the Bambuí seawater and probably within other epicontinental seas during the late Ediacaran-Cambrian transition.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 657
Author(s):  
Lilian Motta Cantanhêde ◽  
Carlos Mata-Somarribas ◽  
Khaled Chourabi ◽  
Gabriela Pereira da Silva ◽  
Bruna Dias das Chagas ◽  
...  

The description of the genus Leishmania as the causative agent of leishmaniasis occurred in the modern age. However, evolutionary studies suggest that the origin of Leishmania can be traced back to the Mesozoic era. Subsequently, during its evolutionary process, it achieved worldwide dispersion predating the breakup of the Gondwana supercontinent. It is assumed that this parasite evolved from monoxenic Trypanosomatidae. Phylogenetic studies locate dixenous Leishmania in a well-supported clade, in the recently named subfamily Leishmaniinae, which also includes monoxenous trypanosomatids. Virus-like particles have been reported in many species of this family. To date, several Leishmania species have been reported to be infected by Leishmania RNA virus (LRV) and Leishbunyavirus (LBV). Since the first descriptions of LRVs decades ago, differences in their genomic structures have been highlighted, leading to the designation of LRV1 in L. (Viannia) species and LRV2 in L. (Leishmania) species. There are strong indications that viruses that infect Leishmania spp. have the ability to enhance parasitic survival in humans as well as in experimental infections, through highly complex and specialized mechanisms. Phylogenetic analyses of these viruses have shown that their genomic differences correlate with the parasite species infected, suggesting a coevolutionary process. Herein, we will explore what has been described in the literature regarding the relationship between Leishmania and endosymbiotic Leishmania viruses and what is known about this association that could contribute to discussions about the worldwide dispersion of Leishmania.


2021 ◽  
Vol 12 (1) ◽  
pp. 203-218 ◽  
Author(s):  
Sergio Caetano-Filho ◽  
Pierre Sansjofre ◽  
Magali Ader ◽  
Gustavo M. Paula-Santos ◽  
Cristian Guacaneme ◽  
...  

2021 ◽  
Vol 321 (1-2) ◽  
pp. 83-117
Author(s):  
Wei Wang ◽  
Peter A. Cawood ◽  
Manoj K. Pandit

2020 ◽  
Vol 123 (3) ◽  
pp. 343-356
Author(s):  
T. Andersen ◽  
G.A. Botha ◽  
M.A. Elburg

Abstract Detrital zircons in late Cretaceous – Palaeogene, calcareous sandstone and conglomerate deposited in continental basins on the southeastern African margin after the breakup of Gondwana have characteristic combinations of age and epsilon-Hf that indicate an origin by recycling of Palaeoproterozoic (Waterberg, Soutpansberg and Pretoria groups) and Phanerozoic (Karoo Supergroup) cover successions. The latter is dominant in the south and east (Boane, Mahosi, Chilojo Cliffs), and the Palaeoproterozoic sources in the northwest (Pafuri, Wright’s Tower, Masisi). This recycling and mixing regime was restricted to late Mesozoic and Palaeogene time in northeastern South Africa and adjoining parts of Mozambique and Zimbabwe. Detrital zircon distribution patterns in these deposits reflect the denudation history of the southern African continental surface after breakup of the Gondwana supercontinent.


2020 ◽  
Author(s):  
Cecilio Quesada ◽  
José Javier Álvaro ◽  
Josep Maria Casas

<p>In today’s western Mediterranean region, Variscan and Alpine thrusts and shear zones combine to hamper a correct identification and palinspastic reconstruction of Cambro-Ordovician sequences. However, gap-related stratigraphic, climatically sensitive facies associations, sedimentary, volcanosedimentary, biogeographic, biodiversity and detrital zircon data mainly made available during the last two decades allow envisaging a new palaeogeographic scenario by linking proximal-to-distal transects across the western and eastern branches of the Ibero-Armorican Arc. Variscan parautochthonous and autochthonous domains are represented palaeogeographically by, from SW to NE: (i) the Central Iberian, West Asturian-Leonese and Cantabrian zones of the Iberian Massif and their laterally correlative Central Armorican Domain, fringed marginally by the Ossa-Morena and North Armorican thinned outer margin of Gondwana, reminiscent of the rift axis during the Cambrian; and (ii) the southeastern Pyrenees, Occitan and SW Sardinia domains, fringed marginally by the slope-to-basinal South Armorican, Thiviers-Payzac, Albigeois and northeastern Pyrenees domains. These proximal-to distal transects of West Gondwana record a diachronous SW-to-NE migration of evaporites, phosphorites and maximum peak of trilobite diversity, related to the counter-clockwise migration of the Gondwana supercontinent, supported by a gradual modification of detrital zircon provenance. Both branches of the Ibero-Armorican Arc also display a diachronous migration of Cambro-Ordovician rift-to-drift conditions associated with distinct igneous manifestations (volcanosedimentary and plutonic). This migration is related to the development of the Furongian (Toledanian) to Mid-Late Ordovician (Sardic) geodynamic events, in response to gap-related thermal doming, subaerial denudation and magmatic activity evolving from calc-alkaline to tholeiitic affinity.</p>


2019 ◽  
pp. 25-42
Author(s):  
E. N. Melankholina ◽  
N. M. Sushchevskaya

Based on geological and geophysical data for the conjugate margins of Africa – East Antarctica, the peculiarities of preparation of the breakup central Gondwana supercontinent are discussed. When using the historical approach, a significant inheritance of the Middle-Upper Jurassic tectono-magmatic development from the preceding time is shown. The first location of tectono-magmatic activity in zones of weakness on the proximal margin, its subsequent migration to distal margins and further oceanic opening is established. The geochemical features of magmas of the region and their sources are under discussion. Evidence for the decisive influence of the Karoo-Mod plume on the development of magmatism is presented. A significant feature of the plume manifestation is considered: the presence of high-magnesian ferruginous picrites , formed by melting of a pyroxenite source with specific composition, coinciding with the central part of the plume and corresponding to the earliest eruptions. We determined the source of magmatism at the initial stage could have been the substance of a rising plume, and magmas reached the surface through existing fractures without interacting with the lithosphere. In the course of evolution, the admixture of pyroxenites in the source decreased and the melts acquired the features of the melting lithospheric mantle, which was reflected in the isotopic characteristics of the melts with a predominance of the enriched EM II component. The structure and magmatism of the Southern Ocean and South Atlantic are compared. Also discussed the locations of the Mesozoic Karoo-Maud and Tristan plumes, as well as the zones of the subsequent breakup of Gondwana, above the margin of the African superplume, indicating a relationship between surface and deep-seated events, is discussed.


Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Terri Cook

New data synthesis suggests that varying rates of trench retreat along the margin of the Gondwana supercontinent were responsible for the curvature of the Tasmanide mountain chains.


Sign in / Sign up

Export Citation Format

Share Document