biome model
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

2015 ◽  
Vol 6 (2) ◽  
pp. 447-460 ◽  
Author(s):  
K. Frieler ◽  
A. Levermann ◽  
J. Elliott ◽  
J. Heinke ◽  
A. Arneth ◽  
...  

Abstract. Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.


2014 ◽  
Vol 5 (1) ◽  
pp. 197-209 ◽  
Author(s):  
K. Nishina ◽  
A. Ito ◽  
D. J. Beerling ◽  
P. Cadule ◽  
P. Ciais ◽  
...  

Abstract. Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and may play a key role in biospheric feedbacks with elevated atmospheric carbon dioxide (CO2) in a warmer future world. We examined the simulation results of seven terrestrial biome models when forced with climate projections from four representative-concentration-pathways (RCPs)-based atmospheric concentration scenarios. The goal was to specify calculated uncertainty in global SOC stock projections from global and regional perspectives and give insight to the improvement of SOC-relevant processes in biome models. SOC stocks among the biome models varied from 1090 to 2650 Pg C even in historical periods (ca. 2000). In a higher forcing scenario (i.e., RCP8.5), inconsistent estimates of impact on the total SOC (2099–2000) were obtained from different biome model simulations, ranging from a net sink of 347 Pg C to a net source of 122 Pg C. In all models, the increasing atmospheric CO2 concentration in the RCP8.5 scenario considerably contributed to carbon accumulation in SOC. However, magnitudes varied from 93 to 264 Pg C by the end of the 21st century across biome models. Using the time-series data of total global SOC simulated by each biome model, we analyzed the sensitivity of the global SOC stock to global mean temperature and global precipitation anomalies (ΔT and ΔP respectively) in each biome model using a state-space model. This analysis suggests that ΔT explained global SOC stock changes in most models with a resolution of 1–2 °C, and the magnitude of global SOC decomposition from a 2 °C rise ranged from almost 0 to 3.53 Pg C yr−1 among the biome models. However, ΔP had a negligible impact on change in the global SOC changes. Spatial heterogeneity was evident and inconsistent among the biome models, especially in boreal to arctic regions. Our study reveals considerable climate uncertainty in SOC decomposition responses to climate and CO2 change among biome models. Further research is required to improve our ability to estimate biospheric feedbacks through both SOC-relevant and vegetation-relevant processes.


2013 ◽  
Vol 4 (2) ◽  
pp. 1035-1064 ◽  
Author(s):  
K. Nishina ◽  
A. Ito ◽  
D. J. Beerling ◽  
P. Cadule ◽  
P. Ciais ◽  
...  

Abstract. Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and may play a key role in biospheric feedback to elevated atmospheric carbon dioxide (CO2) in the warmer future world. We examined seven biome models with climate projections forced by four representative-concentration-pathways (RCPs)-based atmospheric concentration scenarios. The goal was to specify uncertainty in global SOC stock projections from global and regional perspectives. Our simulations showed that SOC stocks among the biome models varied from 1090 to 2650 Pg C even in historical periods (ca. 2000). In a higher forcing scenario (RCP8.5), inconsistent estimates of impact on the total SOC (2099–2000) were obtained from different model simulations, ranging from a net sink of 347 Pg C to a net source of 122 Pg C. In all models, the elevated atmospheric CO2 concentration in the RCP8.5 scenario considerably contributed to carbon accumulation in SOC. However, magnitudes varied from 93 to 264 Pg C by the end of the 21st century. Using time-series data of total global SOC estimated by biome biome model, we statistically analyzed the sensitivity of the global SOC stock to global mean temperature and global precipitation anomalies (ΔT and ΔP respectively) in each biome model using a state-space model. This analysis suggests that ΔT explained global SOC stock changes in most models with a resolution of 1–2 °C, and the magnitude of global SOC decomposition from a 2 °C rise ranged from almost 0 Pg C yr−1 to 3.53 Pg C yr−1 among the biome models. On the other hand, ΔP had a negligible impact on change in the global SOC changes. Spatial heterogeneity was evident and inconsistent among the changes in SOC estimated by the biome models, especially in boreal to arctic regions. Our study revealed considerable climate change impact uncertainty in SOC decomposition among biome models. Further research is required to improve our understanding and ability to estimate biospheric feedback through SOC-relevant processes as well as vegetation processes.


1992 ◽  
Vol 19 (2) ◽  
pp. 117 ◽  
Author(s):  
I. Colin Prentice ◽  
Wolfgang Cramer ◽  
Sandy P. Harrison ◽  
Rik Leemans ◽  
Robert A. Monserud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document