wallpaper groups
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Lucy Liu ◽  
Gary P. T. Choi ◽  
L. Mahadevan

Kirigami, the art of paper cutting, has become a paradigm for mechanical metamaterials in recent years. The basic building blocks of any kirigami structures are repetitive deployable patterns that derive inspiration from geometric art forms and simple planar tilings. Here, we complement these approaches by directly linking kirigami patterns to the symmetry associated with the set of 17 repeating patterns that fully characterize the space of periodic tilings of the plane. We start by showing how to construct deployable kirigami patterns using any of the wallpaper groups, and then design symmetry-preserving cut patterns to achieve arbitrary size changes via deployment. We further prove that different symmetry changes can be achieved by controlling the shape and connectivity of the tiles and connect these results to the underlying kirigami-based lattice structures. All together, our work provides a systematic approach for creating a broad range of kirigami-based deployable structures with any prescribed size and symmetry properties.


2021 ◽  
Vol 288 (1955) ◽  
pp. 20211142
Author(s):  
Peter J. Kohler ◽  
Alasdair D. F. Clarke

Symmetries are present at many scales in natural scenes. Humans and other animals are highly sensitive to visual symmetry, and symmetry contributes to numerous domains of visual perception. The four fundamental symmetries—reflection, rotation, translation and glide reflection—can be combined into exactly 17 distinct regular textures. These wallpaper groups represent the complete set of symmetries in two-dimensional images. The current study seeks to provide a more comprehensive description of responses to symmetry in the human visual system, by collecting both brain imaging (steady-state visual evoked potentials measured using high-density EEG) and behavioural (symmetry detection thresholds) data using the entire set of wallpaper groups. This allows us to probe the hierarchy of complexity among wallpaper groups, in which simpler groups are subgroups of more complex ones. We find that both behaviour and brain activity preserve the hierarchy almost perfectly: subgroups consistently produce lower-amplitude symmetry-specific responses in visual cortex and require longer presentation durations to be reliably detected. These findings expand our understanding of symmetry perception by showing that the human brain encodes symmetries with a high level of precision and detail. This opens new avenues for research on how fine-grained representations of regular textures contribute to natural vision.


2021 ◽  
Vol 103 (22) ◽  
Author(s):  
Shingo Kobayashi ◽  
Yuki Yamazaki ◽  
Ai Yamakage ◽  
Masatoshi Sato

2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Lawrence W. Baggett ◽  
Kathy D. Merrill ◽  
Judith A. Packer ◽  
Keith F. Taylor

2021 ◽  
Author(s):  
Peter J. Kohler ◽  
Alasdair D. F. Clarke

AbstractSymmetries are present at many scales in images of natural scenes. A large body of literature has demonstrated contributions of symmetry to numerous domains of visual perception. The four fundamental symmetries, reflection, rotation, translation and glide reflection, can be combined in exactly 17 distinct ways. These wallpaper groups represent the complete set of symmetries in 2D images and have recently found use in the vision science community as an ideal stimulus set for studying the perception of symmetries in textures. The goal of the current study is to provide a more comprehensive description of responses to symmetry in the human visual system, by collecting both brain imaging (Steady-State Visual Evoked Potentials measured using high-density EEG) and behavioral (symmetry detection thresholds) data using the entire set of wallpaper groups. This allows us to probe the hierarchy of complexity among wallpaper groups, in which simpler groups are subgroups of more complex ones. We find that this hierarchy is preserved almost perfectly in both behavior and brain activity: A multi-level Bayesian GLM indicates that for most of the 63 subgroup relationships, subgroups produce lower amplitude responses in visual cortex (posterior probability: > 0.95 for 56 of 63) and require longer presentation durations to be reliably detected (posterior probability: > 0.95 for 49 of 63). This systematic pattern is seen only in visual cortex and only in components of the brain response known to be symmetric-specific. Our results show that representations of symmetries in the human brain are precise and rich in detail, and that this precision is reflected in behavior. These findings expand our understanding of symmetry perception, and open up new avenues for research on how fine-grained representations of regular textures contribute to natural vision.


Author(s):  
Mehmet Erbudak ◽  
Selim Onat

The symmetry properties of an ornament contain information about its civilisation and its interactions with other cultural sources. Two-dimensional periodic ornaments can be strictly classified into a limited set of 17 mathematical symmetry groups, also known as wallpaper groups. The collection of ornaments thus classified for a civilisation is characteristic of the cultural group and serves as a fingerprint to identify that group. If the distribution of wallpaper groups is available for several societies, mathematical methods can be applied to determine similarities and differences between the art practices of these communities. This method allows a systematic approach to the general ornamental practices within a culture and their interactions in the form of similarity of fingerprints. We test the feasibility of the method on examples of medieval Armenians, Byzantium, Seljuks first in Persia and then in Anatolia and among Arabs in the Middle East. For this purpose we present the distribution of the planar ornaments and calculate the Euclidean distances in pairs. We tested to what extend geographical and religious factors could account for the observed similarity of ornamental groups between cultures. The results suggest an intensive interaction between the Seljuk Turks and Arab craftsmen who produced the ornaments. Therefore the cultural interactions are religiously motivated.


Author(s):  
Mehmet Erbudak ◽  
Selim Onat

The symmetry properties of an ornament contain information about its civilisation and its interactions with other cultural sources. Two-dimensional periodic ornaments can be strictly classified into mathematical wallpaper groups. The collection of ornaments thus classified for a civilisation is characteristic of the cultural group and serves as a fingerprint to identify that group. If the distribution of wallpaper groups is available for several societies, multi-dimensional scaling algorithms can be applied to determine similarities and differences between the art practices of these communities. This method allows a systematic approach to the general ornamental practices within a culture and their interactions in the form of similarity of fingerprints. We test the feasibility of the method on examples of medieval Armenians, Byzantium, Seljuks first in Persia and then in Anatolia and among Arabs in the Middle East. For this purpose we present the distribution of the planar ornaments and calculate the corresponding Pearson correlation coefficients in pairs. The results suggest an intense interaction between the Seljuk Turks and Arab craftsmen, as well as between Armenian and Byzantine artisans who made the ornaments.


Science ◽  
2018 ◽  
Vol 361 (6399) ◽  
pp. 246-251 ◽  
Author(s):  
Benjamin J. Wieder ◽  
Barry Bradlyn ◽  
Zhijun Wang ◽  
Jennifer Cano ◽  
Youngkuk Kim ◽  
...  

Materials whose gapless surface states are protected by crystal symmetries include mirror topological crystalline insulators and nonsymmorphic hourglass insulators. There exists only a very limited set of possible surface crystal symmetries, captured by the 17 “wallpaper groups.” Here we show that a consideration of symmetry-allowed band degeneracies in the wallpaper groups can be used to understand previously described topological crystalline insulators and to predict phenomenologically distinct examples. In particular, the two wallpaper groups with multiple glide lines, pgg and p4g, allow for a topological insulating phase whose surface spectrum consists of only a single, fourfold-degenerate, true Dirac fermion, representing an exception to a symmetry-enhanced fermion-doubling theorem. We theoretically predict the presence of this phase in Sr2Pb3 in space group 127 (P4/mbm).


2018 ◽  
Vol 60 (3) ◽  
pp. 635-660
Author(s):  
STEPHEN P. HUMPHRIES ◽  
REBECA A. PAULSEN

AbstractFor a group G, a weak Cayley table isomorphism is a bijection f : G → G such that f(g1g2) is conjugate to f(g1)f(g2) for all g1, g2 ∈ G. The set of all weak Cayley table isomorphisms forms a group (G) that is the group of symmetries of the weak Cayley table of G. We determine (G) for each of the 17 wallpaper groups G, and for some other crystallographic groups.


Sign in / Sign up

Export Citation Format

Share Document