succinate dehydrogenase inhibitors
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 35)

H-INDEX

13
(FIVE YEARS 5)

Author(s):  
Tatiane Silva de Abreu ◽  
Mariana Aparecida Braga ◽  
Marcus Vinicius Cardoso Trento ◽  
Isaac Filipe Moreira Konig ◽  
Gustavo Henrique Andrade Machado ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 1514
Author(s):  
Riinu Kiiker ◽  
Marite Juurik ◽  
Andres Mäe

Ramularia leaf spot caused by the fungus Ramularia collo-cygni, has recently become widespread in Estonian barley fields. Currently, disease control in barley fields relies on SDHI and DMI fungicides, which might be threatened by R. collo-cygni isolates that are well-adapted to fungicide pressure. In a two-year study, 353 R. collo-cygni isolates were collected from spring barley fields in Estonia. A total of 153 R. collo-cygni isolates were examined for sensitivity to azoles (DMIs; prothioconazole-desthio, epoxiconazole, mefentrifluconazole) and succinate dehydrogenase inhibitors (SDHIs; boscalid, fluxapyroxad). Epoxiconazole was the least effective and a new fungicide mefentrifluconazole was the most effective DMI. Among SDHIs, fluxapyroxad was more effective than boscalid. Also, single R. collo-cygni isolates with high resistance to tested fungicides occurred, which could affect fungicide control of the pathogen. The entire collection of R. collo-cygni was analysed for mutations in fungicide target proteins. Six mutations were identified in CYP51 gene, the most dominant being I381T, I384T, and S459C. Also, numerous point mutations in the SdhC gene were present. The mutation G143A in strobilurin target protein CytB dominates in over 80% of the R. collo-cygni population, confirming the low efficacy of strobilurin fungicides in barley disease control.


Sign in / Sign up

Export Citation Format

Share Document