scholarly journals Fungicide Resistance Evolving in Ramularia Collo-Cygni Population in Estonia

2021 ◽  
Vol 9 (7) ◽  
pp. 1514
Author(s):  
Riinu Kiiker ◽  
Marite Juurik ◽  
Andres Mäe

Ramularia leaf spot caused by the fungus Ramularia collo-cygni, has recently become widespread in Estonian barley fields. Currently, disease control in barley fields relies on SDHI and DMI fungicides, which might be threatened by R. collo-cygni isolates that are well-adapted to fungicide pressure. In a two-year study, 353 R. collo-cygni isolates were collected from spring barley fields in Estonia. A total of 153 R. collo-cygni isolates were examined for sensitivity to azoles (DMIs; prothioconazole-desthio, epoxiconazole, mefentrifluconazole) and succinate dehydrogenase inhibitors (SDHIs; boscalid, fluxapyroxad). Epoxiconazole was the least effective and a new fungicide mefentrifluconazole was the most effective DMI. Among SDHIs, fluxapyroxad was more effective than boscalid. Also, single R. collo-cygni isolates with high resistance to tested fungicides occurred, which could affect fungicide control of the pathogen. The entire collection of R. collo-cygni was analysed for mutations in fungicide target proteins. Six mutations were identified in CYP51 gene, the most dominant being I381T, I384T, and S459C. Also, numerous point mutations in the SdhC gene were present. The mutation G143A in strobilurin target protein CytB dominates in over 80% of the R. collo-cygni population, confirming the low efficacy of strobilurin fungicides in barley disease control.

Author(s):  
Thomas Assinger ◽  
Stefano F. F. Torriani ◽  
Salvatore Accardo ◽  
James Fountaine ◽  
Siegrid Steinkellner

AbstractRamularia collo-cygni B. Sutton and J.M. Waller is a major disease in Austrian barley-growing regions. To date, fungicide application is the most effective method to manage the disease; however, fungicide resistance to demethylation and succinate dehydrogenase inhibitors has developed over the last few years. In the growing seasons 2016/2017 and 2017/2018, field trials were carried out to analyze the efficiency of fungicide strategies based on different fungicide classes. Disease development, growth parameters and monitoring of CYP51 and sdh mutations were determined. Fungicide treatments resulted in higher disease control, green leaf area and grain yield. In Austrian R. collo-cygni field populations, the frequency of the mutations CYP51-I325T and CYP51-I328L was low to moderate. Frequency of mutations sdhC-H146R and sdhC-H153R was low. Frequencies of CYP51-I325T and -I328L were similar and increased following DMI application. Frequency of sdhC-H146R was higher compared to sdhC-H153R. The SDHI benzovindiflupyr showed a higher selection rate for sdh mutations compared to bixafen. These sdh mutations were not selected if chlorothalonil was used as mixing partner, leading to a stable composition of sdh resistance alleles over the last two years. Chlorothalonil was proven to be an effective tool for anti-resistance strategies. Currently, SDHIs and DMIs are the backbone of Ramularia leaf spot control in Austria; however, the level of resistance is likely to increase in absence of suitable anti-resistance strategies and following the ban of chlorothalonil.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hafiz Muhammad Usman ◽  
Qin Tan ◽  
Mohammad Mazharul Karim ◽  
Muhammad Adnan ◽  
Weixiao Yin ◽  
...  

Anthracnose, mainly caused by Colletotrichum gloeosporioides species complex including C. fructicola and C. siamense, is a devastating disease of peach. The chemical control has been widely used for years and management failures have increased towards commonly used fungicides. Therefore, screening of sensitivity of Colletotrichum spp. to fungicides with different modes of action is needed to make proper management strategies for peach anthracnose. In this study, sensitivity of 80 isolates of C. fructicola and C. siamense was screened for pyraclostrobin, procymidone, prochloraz and fludioxonil based on mycelial growth inhibition at discriminatory doses. Results showed that C. fructicola and C. siamense isolates were highly resistant to procymidone and fludioxonil with 100% resistance frequencies to both fungicides, but sensitive to prochloraz, i.e., no resistant isolates were found. For pyraclostrobin, 74% of C. fructicola isolates showed high resistance and 26 % were low resistant, all of the C. siamense isolates were low resistant. No positive cross-resistance was observed between pyraclostrobin and azoxystrobin, even they are members of the same quinone outside inhibitor (QoI) fungicide group, and between pyraclostrobin and non-QoIs. Resistant isolates to QoI fungicides were evaluated for the fitness penalty. Results showed that no significant differences except for mycelial growth rates were detected between highly resistant and low-resistant isolates of C. fructicola. Molecular characterization of Cyt b gene revealed that the G143A point mutation was the determinant of the high resistance in C. fructicola. This study demonstrated the current resistance status of C. fructicola and C. siamense to different fungicides and their future perspectives. Demethylation inhibitor (DMI) fungicides are the best option among different chemicals to control peach anthracnose in China.


2014 ◽  
Vol 104 (12) ◽  
pp. 1264-1273 ◽  
Author(s):  
Frank van den Bosch ◽  
Neil Paveley ◽  
Femke van den Berg ◽  
Peter Hobbelen ◽  
Richard Oliver

We have reviewed the experimental and modeling evidence on the use of mixtures of fungicides of differing modes of action as a resistance management tactic. The evidence supports the following conclusions. 1. Adding a mixing partner to a fungicide that is at-risk of resistance (without lowering the dose of the at-risk fungicide) reduces the rate of selection for fungicide resistance. This holds for the use of mixing partner fungicides that have either multi-site or single-site modes of action. The resulting predicted increase in the effective life of the at-risk fungicide can be large enough to be of practical relevance. The more effective the mixing partner (due to inherent activity and/or dose), the larger the reduction in selection and the larger the increase in effective life of the at-risk fungicide. 2. Adding a mixing partner while lowering the dose of the at-risk fungicide reduces the selection for fungicide resistance, without compromising effective disease control. The very few studies existing suggest that the reduction in selection is more sensitive to lowering the dose of the at-risk fungicide than to increasing the dose of the mixing partner. 3. Although there are very few studies, the existing evidence suggests that mixing two at-risk fungicides is also a useful resistance management tactic. The aspects that have received too little attention to draw generic conclusions about the effectiveness of fungicide mixtures as resistance management strategies are as follows: (i) the relative effect of the dose of the two mixing partners on selection for fungicide resistance, (ii) the effect of mixing on the effective life of a fungicide (the time from introduction of the fungicide mode of action to the time point where the fungicide can no longer maintain effective disease control), (iii) polygenically determined resistance, (iv) mixtures of two at-risk fungicides, (v) the emergence phase of resistance evolution and the effects of mixtures during this phase, and (vi) monocyclic diseases and nonfoliar diseases. The lack of studies on these aspects of mixture use of fungicides should be a warning against overinterpreting the findings in this review.


2014 ◽  
Vol 104 (4) ◽  
pp. 324-331 ◽  
Author(s):  
Alexey Mikaberidze ◽  
Bruce A. McDonald ◽  
Sebastian Bonhoeffer

Fungicide mixtures produced by the agrochemical industry often contain low-risk fungicides, to which fungal pathogens are fully sensitive, together with high-risk fungicides known to be prone to fungicide resistance. Can these mixtures provide adequate disease control while minimizing the risk for the development of resistance? We present a population dynamics model to address this question. We found that the fitness cost of resistance is a crucial parameter to determine the outcome of competition between the sensitive and resistant pathogen strains and to assess the usefulness of a mixture. If fitness costs are absent, then the use of the high-risk fungicide in a mixture selects for resistance and the fungicide eventually becomes nonfunctional. If there is a cost of resistance, then an optimal ratio of fungicides in the mixture can be found, at which selection for resistance is expected to vanish and the level of disease control can be optimized.


2018 ◽  
Vol 108 (7) ◽  
pp. 803-817 ◽  
Author(s):  
James A. D. Elderfield ◽  
Francisco J. Lopez-Ruiz ◽  
Frank van den Bosch ◽  
Nik J. Cunniffe

Whether fungicide resistance management is optimized by spraying chemicals with different modes of action as a mixture (i.e., simultaneously) or in alternation (i.e., sequentially) has been studied by experimenters and modelers for decades. However, results have been inconclusive. We use previously parameterized and validated mathematical models of wheat Septoria leaf blotch and grapevine powdery mildew to test which tactic provides better resistance management, using the total yield before resistance causes disease control to become economically ineffective (“lifetime yield”) to measure effectiveness. We focus on tactics involving the combination of a low-risk and a high-risk fungicide, and the case in which resistance to the high-risk chemical is complete (i.e., in which there is no partial resistance). Lifetime yield is then optimized by spraying as much low-risk fungicide as is permitted, combined with slightly more high-risk fungicide than needed for acceptable initial disease control, applying these fungicides as a mixture. That mixture rather than alternation gives better performance is invariant to model parameterization and structure, as well as the pathosystem in question. However, if comparison focuses on other metrics, e.g., lifetime yield at full label dose, either mixture or alternation can be optimal. Our work shows how epidemiological principles can explain the evolution of fungicide resistance, and also highlights a theoretical framework to address the question of whether mixture or alternation provides better resistance management. It also demonstrates that precisely how spray tactics are compared must be given careful consideration.[Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


2021 ◽  
pp. 681-706
Author(s):  
Neil Havis ◽  

Ramularia leaf spot is an emerging pathogen across barley growing regions of the world. It's rise from minor to major disease has been rapid over the last twenty years. The causal pathogen, Ramularia collo-cygni is poorly understood but it has been shown to have a complex life cycle and the ability to exist on many hosts in an endophytic state. The rate of development of fungicide resistance in the fungus is also extremely fast and many of the major single site fungicides are no longer effective in many countries. With multisite fungicides having their approval or reconsidered and no consistent varietal resistance available, control of the disease is increasing challenging. This chapter reviews the latest research into Ramularia biology and control and highlights the areas where recent advances have been made.


2019 ◽  
Vol 109 (12) ◽  
pp. 2096-2106 ◽  
Author(s):  
Qin Peng ◽  
Zhiwen Wang ◽  
Yuan Fang ◽  
Weizhen Wang ◽  
Xingkai Cheng ◽  
...  

Ethaboxam is a β-tubulin inhibitor registered for the control of oomycete pathogens. The current study was established to determine the ethaboxam sensitivity of the plant pathogen Phytophthora sojae and investigate the potential for the emergence of fungicide resistance. The effective concentration for 50% inhibition (EC50) of 112 Phytophthora sojae isolates exhibited a unimodal distribution with a mean EC50 for ethaboxam of 0.033 µg/ml. Establishing this baseline sensitivity provided critical data for monitoring changes in ethaboxam-sensitivity in field populations. The potential for fungicide resistance was investigated using adaptation on ethaboxam-amended V8 agar, which resulted in the isolation of 20 resistant mutants. An assessment of the biological characteristics of the mutants including mycelial growth, sporulation, germination rate and pathogenicity indicated that the resistance risk in Phytophthora sojae was low to medium with no cross-resistance between ethaboxam and cymoxanil, metalaxyl, flumorph, and oxathiapiprolin being detected. However, positive cross-resistance was found between ethaboxam and zoxamide for Q8L and I258V but negative cross-resistance for C165Y. Further investigation revealed that the ethaboxam-resistant mutants had point mutations at amino acids Q8L, C165Y, or I258V of their β-tubulin protein sequences. CRISPR/Cas9-mediated transformation experiments confirmed that the Q8L, C165Y, or I258V mutations could confer ethaboxam resistance in Phytophthora sojae and that the C165Y mutation induces high levels of resistance. Taken together, the results of the study provide essential data for monitoring the emergence of resistance and resistance management strategies for ethaboxam, as well as for improving the design of novel β-tubulin inhibitors for future development.


2000 ◽  
Vol 1 (1) ◽  
pp. 2 ◽  
Author(s):  
G. G. Grove ◽  
R. J. Boal ◽  
L. H. Bennett

Powdery mildew of sweet cherry is the most serious disease in irrigated orchards and nurseries of Washington. The fungus infects foliage and fruit, but fruit infections are of primary concern due to the potential for rejection of entire crops. Development of resistance to demethylation inhibiting (DMI) fungicides in the mid-1990s increased the difficulty in controlling this disease. Orchard mildew management programs that utilize oils, DMI and strobilurin fungicides have been developed for use in eastern Washington. A growth stage (phenology)/calendar-based program provides excellent disease control, utilizes three fungicidal modes of action, and minimizes oil-induced fruit and foliar phytotoxicity by limiting oil use to no later than the pit hardening stage. A second approach that utilizes oils in a temperature-based disease forecasting system provides excellent disease control with fewer fungicide applications. Accepted for publication 19 July 2000. Published 28 July 2000.


Sign in / Sign up

Export Citation Format

Share Document