west qinling orogen
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhangjun Li ◽  
Feng Cheng ◽  
Ming Hao ◽  
Zachary M. Young ◽  
Shangwu Song ◽  
...  

The West Qinling orogen has played an important role in accommodating the deformation in the northeastern Tibetan Plateau induced by the India-Eurasia convergence. Here we construct a vertical land motion (VLM) model based on the latest leveling observations adjacent to the West Qinling orogen. Combined with the horizontal deformation field, the crustal deformation pattern in this area is investigated. Additionally, slip rate and coupling coefficients of the West Qinling fault, the longest fault separating the West Qinling orogen from the Lanzhou (Longxi) block, are inverted and constrained with GPS and VLM observations. Results show that the West Qinling fault slips slowly at a rate of 1–2 mm/yr and is strongly coupled with a moment magnitude deficit of Mw7.4. The crustal uplift rates adjacent to the West Qinling orogen are 0–3 mm/yr; which combined with 0–12.5 × 10−9/yr contraction rates, suggests that strain transformation plays a key role in controlling the tectonic uplift in the West Qinling orogen, and furthers our understanding of the contemporary geomorphic and topographic features. We identify a significant deformation transition belt at longitudes of 105°–106°E, which indicates that crustal deformation, induced from the northeastern expansion of the Tibetan Plateau, is mainly constrained to the plateau, rather than accommodated by crustal materials escaping eastward along the Qinling Mountains.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 647
Author(s):  
Xiaoye Jin ◽  
Jixiang Sui

The Laodou gold deposit, located in the West Qinling Orogen of central China, is a newly recognized intrusion-related gold deposit. It consists of auriferous quartz-sulfide-tourmaline and minor quartz-stibnite veins that are structurally controlled by fault zones transecting the host quartz diorite porphyry. Two types of tourmaline were identified in this study: Type 1 tourmaline occurs as quartz-tourmaline nodules within the quartz diorite porphyry, whereas type 2 tourmaline occurs as quartz-sulfide-tourmaline veins in auriferous lodes. Here, we present a major and trace element analysis by electron microprobe and laser ablation inductively coupled plasma mass spectrometry on these two types of tourmaline. Both tourmaline types fall into the alkali group, and are classified under the schorl-dravite solid solution series. The substitutions of FeMg–1, FeAl–1, AlO((Fe, Mg)(OH)) –1, and X-site vacancyCa–1 are inferred by the variations of their major element compositions. Field and mineralogy observations suggest that type 1 tourmaline is a product of the late crystallization process of the quartz diorite porphyry, whereas type 2 tourmaline coexists with Au-bearing arsenopyrite and is crystallized from the ore-forming fluids. Their rare earth element compositions record the related magmatic hydrothermal evolution. The Co and Ni concentrations of the coexisting type 2 tourmaline and arsenopyrite define a regression line (correlation coefficient = 0.93) with an angular coefficient of 0.66, which represents the Co/Ni ratio of the tourmaline and arsenopyrite-precipitating fluids. This value is close to the Co/Ni ratios of the host quartz diorite porphyry, indicating a magma origin of the ore-forming fluids. The substitution of Al3+ by Fe3+ in both tourmaline types shows that type 1 tourmaline approaches the end member of povondraite whereas type 2 tourmaline occurs in opposite plots near the end member of Oxy-dravite, reflecting a more oxidizing environment for type 2 tourmaline formation. Moreover, the redox-sensitive V and Cr values of type 2 tourmaline are commonly 1–2 orders of magnitude higher than those of type 1 tourmaline, which also suggests that type 2 tourmaline forms from more oxidizing fluids. Combined with gold occurrence and fluid properties, we propose that the increasing of oxygen fugacity in the ore-forming fluids is a trigger of gold precipitation.


Sign in / Sign up

Export Citation Format

Share Document