standard toxicity test
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Juan José Parajó ◽  
Pablo Vallet ◽  
Luis Miguel Varela ◽  
María Villanueva ◽  
Josefa Salgado

AbstractThe applicability of ionic liquids (ILs) has increased over the last years, and even new opportunities are becoming a reality, i.e. mixtures of pure IL and inorganic salt as electrolytes for smart electrochemical devices, yet the effects on the environment are almost unknown. In this work, the ecotoxicity of two pure protic ILs (Ethylammonium nitrate and Ethylimidazolium nitrate) and two pure aprotic ILs (butylmethylpyrrolidinium bis(trifluoromethylsulfonyl)imide and butyldimethylimidazolium bis(trifluoromethylsulfonyl)imide) and that of their binary mixtures with inorganic salts with common cation was tested towards changes in the bioluminescence of the bacteria Aliivibrio fischeri, using the Microtox® standard toxicity test. EC50 of these mixtures was determined over three standard periods of time and compared with the corresponding values to pure ILs. Results indicate that the aprotic ILs are more toxic than protic and that aromatic are more toxic than non-aromatic. The addition of inorganic mono (LiNO3), di (Ca(NO3)2·4H2O, Mg(NO3)2·6H2O) and trivalent (Al(NO3)3·9H2O) salts in binary mixtures with EAN was analysed first. The latter was found to induce an important increase in toxicity. Finally, mixtures of IL-inorganic lithium salt (LiNO3, for the protic ILs and LiTFSI for the aprotic ILs) toxicity was also studied, which showed toxicity levels strongly dependent on the IL of the mixture.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3742
Author(s):  
Alonso-López Olalla ◽  
López-Ibáñez Sara ◽  
Beiras Ricardo

Due to the continuous rise in conventional plastic production and the deficient management of plastic waste, industry is developing alternative plastic products made of biodegradable or biobased polymers. The challenge nowadays is to create a new product that combines the advantages of conventional plastics with environmentally friendly properties. This study focuses on the assessment of the potential impact that polyvinyl alcohol (PVA)-based polymers may have once they are released into the marine environment, in terms of biodegradation in seawater (assessed by the percentage of the Theoretical Oxygen Demand, or % ThOD, of each compound) and aquatic toxicity, according to the standard toxicity test using Paracentrotus lividus larvae. We have tested three different materials: two glycerol-containing PVA based ones, and another made from pure PVA. Biodegradation of PVA under marine conditions without an acclimated inoculum seems to be negligible, and it slightly improves when the polymer is combined with glycerol, with a 5.3 and 8.4% ThOD achieved after a period of 28 days. Toxicity of pure PVA was also negligible (<1 toxic units, TU), but slightly increases when the material included glycerol (2.2 and 2.3 TU). These results may contribute to a better assessment of the behavior of PVA-based polymers in marine environments. Given the low biodegradation rates obtained for the tested compounds, PVA polymers still require further study in order to develop materials that are truly degradable in real marine scenarios.


2021 ◽  
Author(s):  
Juan José Parajó ◽  
Pablo Vallet ◽  
Luis Miguel Varela ◽  
María Villanueva ◽  
Josefa SALGADO

Abstract The applicability of ionic liquids (ILs) has been increased during the last years and even new opportunities are becoming a reality, i.e. mixtures of pure IL and inorganic salt as electrolytes for smart electrochemical devices, but the effects on environment are almost unknown. In this work, the ecotoxicity of two pure protic ILs (Ethylammonium nitrate and Ethylimidazolium nitrate) and two pure aprotic ILs (butylmethylpyrrolidinium bis(trifluoromethylsulfonyl)imide and butyldimethylimidazolium bis(trifluoromethylsulfonyl)imide) and that of their binary mixtures with inorganic salts with common cation was tested towards changes on the bioluminescence of the bacteria Aliivibrio fischeri, using the Microtox® standard toxicity test. EC50 of these mixtures was determined over three standard periods of time and compared with the corresponding values to pure ILs. Results indicate that the aprotic ILs are more toxic than protic and that aromatic are more toxic than non-aromatic. The addition of inorganic mono (LiNO3), di (Ca(NO3)2·4H2O, Mg(NO3)2·6H2O) and trivalent (Al(NO3)3·9H2O) salts in binary mixtures with EAN was firstly analysed, obtaining that the latter induces an important increase on toxicity. Finally, mixtures of IL- inorganic lithium salt (LiNO3, for the protic ILs and LiTFSI for the aprotic ILs) toxicity was also studied, which resulted strongly dependent on the IL of the mixture.


2010 ◽  
pp. 85-98 ◽  
Author(s):  
Magnus Breitholtz ◽  
Elin Lundström ◽  
Ulrika Dahl ◽  
Valery Forbes

1999 ◽  
Vol 43 (3) ◽  
pp. 309-316 ◽  
Author(s):  
Carmel A. Pollino ◽  
Douglas A. Holdway

Sign in / Sign up

Export Citation Format

Share Document