effective algebra
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2018 ◽  
Vol 83 (2) ◽  
pp. 529-550 ◽  
Author(s):  
NOAM GREENBERG ◽  
ALEXANDER G. MELNIKOV ◽  
JULIA F. KNIGHT ◽  
DANIEL TURETSKY

AbstractThis article contributes to the general program of extending techniques and ideas of effective algebra to computable metric space theory. It is well-known that relative computable categoricity (to be defined) of a computable algebraic structure is equivalent to having a c.e. Scott family with finitely many parameters (e.g., [1]). The first main result of the article extends this characterisation to computable Polish metric spaces. The second main result illustrates that just a slight change of the definitions will give us a new notion of categoricity unseen in the countable case (to be stated formally). The second result also shows that the characterisation of computably categorical closed subspaces of ${\Cal R}^n $ contained in [17] cannot be improved. The third main result extends the characterisation to not necessarily separable structures of cardinality κ using κ-computability.





1994 ◽  
Vol 59 (4) ◽  
pp. 1360-1382
Author(s):  
Rod Downey ◽  
Christine Haught

A reducibility ≤p is a procedure whereby a set A can be computed from a set B. The most general and most extensively studied reducibility is Turing reducibility (≤T). However, when one analyzes effectiveness considerations in classical mathematics, one often discovers that the relevant reducibilities are stronger (i.e., more restrictive) than ≤T. To illustrate, in combinatorial group theory we find that the word problem is many-one reducible to the conjugacy problem, and that word problems occur in each r.e. truth table (tt-) degree (see, for example, Miller [17]).In the present paper we are concerned with another strong reducibility: weak truth table (wtt-) reducibility. Here the reader should recall that A ≤wtt, β means that there is a procedure Φ and a recursive function φ such that Φ(β) = A and for all x, the u(Φ(β; X)) < φ (x). That is, the amount of information used in the computation is bounded by φ. The critical difference between truth table and weak truth table reducibilities is that for tt we will at once be “given the whole table.” Thus if Δ is a tt-procedure and δ is its use, then for all x and all strings σ of length δ(x) we can figure out Δ(σ; x). On the other hand if Δ is merely a wtt-procedure it may be that for some string σ, Δ(σ; x)↓, whilst for another string μ of the same length it may be that Δ{μ; x) ↑. We remark that wtt-reducibility arises very naturally both in effective algebra and in the structure of the r.e. T-degrees R. The reader should see, for instance, Downey and Remmel [3], where it is shown that the complexity of r.e. bases of an r.e. vector space V is characterised precisely by the wtt-degrees below V, and also Ladner and Sasso [14] or Downey [1], where the wtt-degrees are used to investigate cupping and capping in R.



Sign in / Sign up

Export Citation Format

Share Document