winglet height
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Hygor Vaz de Souza Barbosa ◽  
Júlio Cesar Costa Campos ◽  
Antonio Marcos de Oliveira Siqueira ◽  
Caio Vieira Hilário ◽  
Natália de Oliveira Faria ◽  
...  

This work goal is to achieve a better flight performance and to support the loading of the highest payload possible. The aerodynamics sector works to improve the aircraft aerodynamic efficiency; therefore, the aerodynamicist looks for the best solution to contribute to the aircraft efficiency by reducing drag forces. The induced drag comes from the lift force, it is related to the escape vortices which occur at the wing tips and it is the most relevant drag component. The use of structural components, as winglets, helps to reduce these vortices and the total aircraft drag. In the context of the SAE Brazil AeroDesign competition, the use of these components can support the project requirements due to the regulatory restrictions. The methodology employed was a simulation using the ANSYS CFX® software for wings modeled with different winglet configurations and the same boundary conditions to verify the best application for the studied wing. The winglet dihedral angle was set at 45°, the strings were maintained and the winglet height was used as a parameter. In the simulations, the wing attack angle was varied to obtain the variation of the drag force. With the obtained results, it was possible to verify that the wings lift forces with h=10% of the half-span winglet have lower values of drag force and present higher values of lift force, for all the analyzed angles, with a variation of up to 6 N of lift force, regarding to the wing without winglet. It is concluded the possibility to observe an improvement in the performance of the wing with the application of the winglet, in the above-mentioned context, and the compensation of a higher efficiency can help competition teams to carry more load on the aircraft due to the lift increase, and to assist the aircraft takeoff and landing handling.



Author(s):  
Alka Gupta ◽  
R. S. Amano

This study is aimed at investigating the aerodynamic performance of the wind turbine blade with winglets and compares its performance in terms of the power generated with a regular straight blade without winglet. Adding a winglet to the wind turbine blade improves the power production without increasing the projected rotor area. A parameter study is carried out where two of the key parameters which describe a winglet design namely the cant angle and the winglet height are varied. The winglet is bent towards the pressure (upstream) side. Pro/ENGINEER is used to generate a straight wind turbine blade which is then modified in SPACECLAIM to attach a winglet to it. Single blade analysis approach is chosen to carry out the computation, as this involves less computational time and low cost. Results show that adding a winglet to a straight blade increases its power output by 2% to 20%. In addition, winglet which has a cant angle of 45° performs better, generating more power than the winglet which is perpendicular to the blade (cant angle 90°). Also, the power generation increases with the increase in the winglet height. Amongst the four winglet designs discussed, the design W4 with cant angle of 45° and winglet height of 4% rotor radius performs the best resulting in 20% improvement in the power generation when added to a straight blade.



Sign in / Sign up

Export Citation Format

Share Document