wing tips
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Huaiyuan Gu ◽  
Fintan Healy ◽  
Djamel Rezgui ◽  
Jonathan E. Cooper

Author(s):  
Hygor Vaz de Souza Barbosa ◽  
Júlio Cesar Costa Campos ◽  
Antonio Marcos de Oliveira Siqueira ◽  
Caio Vieira Hilário ◽  
Natália de Oliveira Faria ◽  
...  

This work goal is to achieve a better flight performance and to support the loading of the highest payload possible. The aerodynamics sector works to improve the aircraft aerodynamic efficiency; therefore, the aerodynamicist looks for the best solution to contribute to the aircraft efficiency by reducing drag forces. The induced drag comes from the lift force, it is related to the escape vortices which occur at the wing tips and it is the most relevant drag component. The use of structural components, as winglets, helps to reduce these vortices and the total aircraft drag. In the context of the SAE Brazil AeroDesign competition, the use of these components can support the project requirements due to the regulatory restrictions. The methodology employed was a simulation using the ANSYS CFX® software for wings modeled with different winglet configurations and the same boundary conditions to verify the best application for the studied wing. The winglet dihedral angle was set at 45°, the strings were maintained and the winglet height was used as a parameter. In the simulations, the wing attack angle was varied to obtain the variation of the drag force. With the obtained results, it was possible to verify that the wings lift forces with h=10% of the half-span winglet have lower values of drag force and present higher values of lift force, for all the analyzed angles, with a variation of up to 6 N of lift force, regarding to the wing without winglet. It is concluded the possibility to observe an improvement in the performance of the wing with the application of the winglet, in the above-mentioned context, and the compensation of a higher efficiency can help competition teams to carry more load on the aircraft due to the lift increase, and to assist the aircraft takeoff and landing handling.


2021 ◽  
Author(s):  
Colin W. Trussa ◽  
Clifford A. Whitfield ◽  
Jacob A. Brandon ◽  
Matthew McCrink

2021 ◽  
Author(s):  
Bahram Raeisi

Tilting ducted fans attached to the wing tips of vertical take-off and landing unmanned aerial vehicles (VTOL UAVs) define new applications for these types of vehicles. This new configuration gives VTOL UAVs the ability to hover like helicopters and fly forward like airplanes. These abilities provide VTOL UAVs with possibility of using any arbitrary location for take-off and landing combined with enhanced range and speed. The thrust vectoring is another advantage of this new configuration, which can be used in most of the necessary maneuvers. The flow behaviour around tilting ducted fans needs to be studied as it has significant effects on the performance of the VTOL UAVs. The first objective of this research is to investigate the use of asymmetrical shape for the external body of ducted fans. This geometry can generate additional lift in cruise mode, which can lead to more applications for the VTOL UAVs by saving more energy. Both CFD and experimental methods showed noticeable improvement in the lift velocity (Vind) of the inlet flow to the rotor plane. This is required for computing aerodynamic coefficients necessary for stability and control analysis of the proposed VTOL UAV. “Actuator Disk Model” combined with the assumption of “Constant Delivered Power” to the propeller were used successfully to calculate Vind for the CFD simulations. The third objective is using CFD coefficient by using an asymmetrical ducted fan. The second objective is to predict the induced simulation for predicting aerodynamic forces and pitching moments of the tilting ducted fans in the transition conditions for different tilting rates. The effects of the stall and flow separation on the aerodynamic coefficients were discussed and compared for both ducted fans. The fourth objective is using the aerodynamic coefficients of the tilting ducted fans to predict and compare the level flight conditions of the proposed VTOL UAV during transition between cruise mode and hover. Results of this research demonstrate satisfactory agreement between CFD simulations and wind tunnel tests for all of these objectives, which could predict the aerodynamic behaviour of the proposed VTOL UAV during transition between cruise mode and hover.


2021 ◽  
Author(s):  
Bahram Raeisi

Tilting ducted fans attached to the wing tips of vertical take-off and landing unmanned aerial vehicles (VTOL UAVs) define new applications for these types of vehicles. This new configuration gives VTOL UAVs the ability to hover like helicopters and fly forward like airplanes. These abilities provide VTOL UAVs with possibility of using any arbitrary location for take-off and landing combined with enhanced range and speed. The thrust vectoring is another advantage of this new configuration, which can be used in most of the necessary maneuvers. The flow behaviour around tilting ducted fans needs to be studied as it has significant effects on the performance of the VTOL UAVs. The first objective of this research is to investigate the use of asymmetrical shape for the external body of ducted fans. This geometry can generate additional lift in cruise mode, which can lead to more applications for the VTOL UAVs by saving more energy. Both CFD and experimental methods showed noticeable improvement in the lift velocity (Vind) of the inlet flow to the rotor plane. This is required for computing aerodynamic coefficients necessary for stability and control analysis of the proposed VTOL UAV. “Actuator Disk Model” combined with the assumption of “Constant Delivered Power” to the propeller were used successfully to calculate Vind for the CFD simulations. The third objective is using CFD coefficient by using an asymmetrical ducted fan. The second objective is to predict the induced simulation for predicting aerodynamic forces and pitching moments of the tilting ducted fans in the transition conditions for different tilting rates. The effects of the stall and flow separation on the aerodynamic coefficients were discussed and compared for both ducted fans. The fourth objective is using the aerodynamic coefficients of the tilting ducted fans to predict and compare the level flight conditions of the proposed VTOL UAV during transition between cruise mode and hover. Results of this research demonstrate satisfactory agreement between CFD simulations and wind tunnel tests for all of these objectives, which could predict the aerodynamic behaviour of the proposed VTOL UAV during transition between cruise mode and hover.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lourelay Moreira dos Santos ◽  
Guilherme Ferreira Gomes ◽  
Rogerio F. Coimbra

Purpose The purpose of this study is to investigate the aerodynamic characteristics of a low-to-moderate-aspect-ratio, tapered, untwisted, unswept wing, equipped of sheared wing tips. Design/methodology/approach In this work, wind tunnel tests were made to study the influence in aerodynamic characteristics over a typical low-to-moderate-aspect-ratio wing of a general aviation aircraft, equipped with sheared – swept and tapered planar – wing tips. An experimental parametric study of different wing tips was tested. Variations in its leading and trailing edge sweep angle as well as variations in wing tip taper ratio were considered. Sheared wing tips modify the flow pattern in the outboard region of the wing producing a vortex flow at the wing tip leading edge, enhancing lift at high angles of attack. Findings The induced drag is responsible for nearly 50% of aircraft total drag and can be reduced through modifications to the wing tip. Some wing tip models present complex geometries and many of them present benefits in particular flight conditions. Results have demonstrated that sweeping the wing tip leading edge between 60 and 65 degrees offers an increment in wing aerodynamic efficiency, especially at high lift conditions. However, results have demonstrated that moderate wing tip taper ratio (0.50) has better aerodynamic benefits than highly tapered wing tips (from 0.25 to 0.15), even with little less wing tip leading edge sweep angle (from 57 to 62 degrees). The moderate wing tip taper ratio (0.50) offers more wing area and wing span than the wings with highly tapered wing tips, for the same aspect ratio wing. Originality/value Although many studies have been reported on the aerodynamics of wing tips, most of them presented complex non-planar geometries and were developed for cruise flight in high subsonic regime (low lift coefficient). In this work, an exploration and parametric study through wind tunnel tests were made, to evaluate the influence in aerodynamic characteristics of a low-to-moderate-aspect-ratio, tapered, untwisted, unswept wing, equipped of sheared wing tips (wing tips highly swept and tapered).


2021 ◽  
Author(s):  
Kan Zhang ◽  
Yanxiu Yao ◽  
Winjin Sun ◽  
Rui Wen ◽  
Yanyan Wang ◽  
...  

The transmetalation as the rate-limiting step was effectively accelerated by newly designed N-heterocyclic carbenes with triazine wing-tips (T-NHC). By using ppm-level precatalyst T-NHC-Pd (8), the highly efficient coupling of aryl...


2020 ◽  
Vol 7 (12) ◽  
pp. 201258
Author(s):  
Hana Šigutová ◽  
Martin Šigut ◽  
Alexander Kovalev ◽  
Stanislav N. Gorb

The phenomenon of hydrophobicity of insect cuticles has received great attention from technical fields due to its wide applicability to industry or medicine. However, in an ecological/evolutionary context such studies remain scarce. We measured spatial differences in wing wettability in Lestes sponsa (Odonata: Lestidae), a damselfly species that can submerge during oviposition, and discussed the possible functional significance. Using dynamic contact angle (CA) measurements together with scanning electron microscopy (SEM), we investigated differences in wettability among distal, middle and proximal wing regions, and in surface nanostructures potentially responsible for observed differences. As we moved from distal towards more proximal parts, mean values of advancing and receding CAs gradually increased from 104° to 149°, and from 67° to 123°, respectively, indicating that wing tips were significantly less hydrophobic than more proximal parts. Moreover, values of CA hysteresis for the respective wing parts decreased from 38° to 26°, suggesting greater instability of the structure of the wing tips. Accordingly, compared with more proximal parts, SEM revealed higher damage of the wax nanostructures at the distal region. The observed wettability gradient is well explained by the submergence behaviour of L. sponsa during underwater oviposition. Our study thus proposed the existence of species-dependent hydrophobicity gradient on odonate wings caused by different ovipositional strategies.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241063
Author(s):  
Bernal Rodríguez-Herrera ◽  
Ricardo Sánchez-Calderón ◽  
Victor Madrigal-Elizondo ◽  
Paulina Rodríguez ◽  
Jairo Villalobos ◽  
...  

Centurio senex is an iconic bat characterized by a facial morphology deviating far from all other New World Leaf Nosed Bats (Phyllostomidae). The species has a bizarrely wrinkled face and lacks the characteristic nose leaf. Throughout its distribution from Mexico to Northern South America the species is most of the time rarely captured and only scarce information on its behavior and natural history is available. Centurio senex is frugivorous and one of the few bats documented to consume also hard seeds. Interestingly, the species shows a distinct sexual dimorphism: Adult males have more pronounced facial wrinkles than females and a fold of skin under the chin that can be raised in style of a face mask. We report the first observations on echolocation and mating behavior of Centurio senex, including synchronized audio and video recordings from an aggregation of males in Costa Rica. Over a period of 6 weeks we located a total of 53 perches, where during the first half of the night males were hanging with raised facial masks at a mean height of 2.35 m. Most of the time, the males moved just their wing tips, and spontaneously vocalized in the ultrasound range. Approaches of other individuals resulted in the perching male beating its wings and emitting a very loud, low frequency whistling call. Following such an encounter we recorded a copulation event. The observed aggregation of adult C. senex males is consistent with lek courtship, a behavior described from only few other bat species.


Sign in / Sign up

Export Citation Format

Share Document