Compact left ideal groups in semigroup compactification of locally compact groups

1993 ◽  
Vol 113 (3) ◽  
pp. 507-517 ◽  
Author(s):  
J. W. Baker ◽  
A. T. Lau

Let G be a locally compact group and let UG denote the spectrum of the C*-algebra LUC(G) of bounded left uniformly continuous complex-valued functions on G, with the Gelfand topology. Then there is a multiplication on UG extending the multiplication on G (when naturally embedded in UG) such that UG is a semigroup and for each x ∈ UG, the map y ↦ yx from UG into UG is continuous, i.e. UG is a compact right topological semigroup. Consequently UG has a unique minimal ideal K which is the union of minimal (closed) left ideals UG. Furthermore K is the union of the set of maximal subgroups of K (see [3], theorem 3·ll).

1994 ◽  
Vol 116 (3) ◽  
pp. 451-463 ◽  
Author(s):  
A. T. Lau ◽  
P. Milnes ◽  
J. S. Pym

AbstractLet N be a compact normal subgroup of a locally compact group G. One of our goals here is to determine when and how a given compactification Y of G/N can be realized as a quotient of the analogous compactification (ψ, X) of G by Nψ = ψ(N) ⊂ X; this is achieved in a number of cases for which we can establish that μNψ ⊂ Nψ μ for all μ ∈ X A question arises naturally, ‘Can the latter containment be proper?’ With an example, we give a positive answer to this question.The group G is an extension of N by GN and can be identified algebraically with Nx GN when this product is given the Schreier multiplication, and for our further results we assume that we can also identify G topologically with N x GN. When GN is discrete and X is the compactification of G coming from the left uniformly continuous functions, we are able to show that X is an extension of N by (GN)(X≅N x (G/N)) even when G is not a semidirect product. Examples are given to illustrate the theory, and also to show its limitations.


2011 ◽  
Vol 61 (6) ◽  
Author(s):  
Saeid Maghsoudi ◽  
Rasoul Nasr-Isfahani

AbstractLet G 1 and G 2 be locally compact groups and let ω 1 and ω 2 be weight functions on G 1 and G 2, respectively. For i = 1, 2, let also C 0(G i, 1/ω i) be the algebra of all continuous complex-valued functions f on G i such that f/ω i vanish at infinity, and let H: C 0(G 1, 1/ω 1) → C 0(G 2, 1/ω 2) be a separating map; that is, a linear map such that H(f)H(g) = 0 for all f, g ∈ C 0(G 1, 1/ω 1) with fg = 0. In this paper, we study conditions under which H can be represented as a weighted composition map; i.e., H(f) = φ(f ℴ h) for all f ∈ C 0(G 1, 1/ω 1), where φ: G 2 → ℂ is a non-vanishing continuous function and h: G 2 → G 1 is a topological isomorphism. Finally, we offer a statement equivalent to that h is also a group homomorphism.


Author(s):  
Klaus Thomsen

SynopsisWe consider automorphic actions on von Neumann algebras of a locally compact group E given as a topological extension 0 → A → E → G → 0, where A is compact abelian and second countable. Motivated by the wish to describe and classify ergodic actions of E when G is finite, we classify (up to conjugacy) first the ergodic actions of locally compact groups on finite-dimensional factors and then compact abelian actions with the property that the fixed-point algebra is of type I with atomic centre. We then handle the case of ergodic actions of E with the property that the action is already ergodic when restricted to A, and then, as a generalisation, the case of (not necessarily ergodic) actions of E with the property that the restriction to A is an action with abelian atomic fixed-point algebra. Both these cases are handled for general locally compact-countable G. Finally, we combine the obtained results to classify the ergodic actions of E when G is finite, provided that either the extension is central and Hom (G, T) = 0, or G is abelian and either cyclic or of an order not divisible by a square.


2012 ◽  
Vol 86 (2) ◽  
pp. 315-321
Author(s):  
MOHAMMAD JAVAD MEHDIPOUR

AbstractIn this paper we give a necessary and sufficient condition under which the answer to the open problem raised by Ghahramani and Lau (‘Multipliers and modulus on Banach algebras related to locally compact groups’, J. Funct. Anal. 150 (1997), 478–497) is positive.


1974 ◽  
Vol 17 (3) ◽  
pp. 274-284 ◽  
Author(s):  
C. H. Houghton

Freudenthal [5, 7] defined a compactification of a rim-compact space, that is, a space having a base of open sets with compact boundary. The additional points are called ends and Freudenthal showed that a connected locally compact non-compact group having a countable base has one or two ends. Later, Freudenthal [8], Zippin [16], and Iwasawa [11] showed that a connected locally compact group has two ends if and only if it is the direct product of a compact group and the reals.


1968 ◽  
Vol 9 (2) ◽  
pp. 87-91 ◽  
Author(s):  
J. W. Baker

Let H be a group of characters on an (algebraic) abelian group G. In a natural way, we may regard G as a group of characters on H. In this way, we obtain a duality between the two groups G and H. One may pose several problems about this duality. Firstly, one may ask whether there exists a group topology on G for which H is precisely the set of continuous characters. This question has been answered in the affirmative in [1]. We shall say that such a topology is compatible with the duality between G and H. Next, one may ask whether there exists a locally compact group topology on G which is compatible with a given duality and, if so, whether there is more than one such topology. It is this second question (previously considered by other authors, to whom we shall refer below) which we shall consider here.


1994 ◽  
Vol 46 (06) ◽  
pp. 1263-1274 ◽  
Author(s):  
Wojciech Jaworski

Abstract Let G be a connected amenable locally compact group with left Haar measure λ. In an earlier work Jenkins claimed that exponential boundedness of G is equivalent to each of the following conditions: (a) every open subsemigroup S ⊆ G is amenable; (b) given and a compact K ⊆ G with nonempty interior there exists an integer n such that (c) given a signed measure of compact support and nonnegative nonzero f ∈ L ∞(G), the condition v * f ≥ 0 implies v(G) ≥ 0. However, Jenkins‚ proof of this equivalence is not complete. We give a complete proof. The crucial part of the argument relies on the following two results: (1) an open σ-compact subsemigroup S ⊆ G is amenable if and only if there exists an absolutely continuous probability measure μ on S such that lim for every s ∈ S; (2) G is exponentially bounded if and only if for every nonempty open subset U ⊆ G.


2019 ◽  
Vol 26 (1) ◽  
pp. 29-33
Author(s):  
Sanjib Basu ◽  
Krishnendu Dutta

Abstract We prove that, under certain restrictions, every locally compact group equipped with a nonzero, σ-finite, regular left Haar measure can be decomposed into two small sets, one of which is small in the sense of measure and the other is small in the sense of category, and all such decompositions originate from a generalised notion of a Lebesgue point. Incidentally, such class of topological groups for which this happens turns out to be metrisable. We also observe an interesting connection between Luzin sets in such spaces and decompositions of the above type.


Author(s):  
Sergey S. Platonov

Let G be a zero-dimensional locally compact Abelian group whose elements are compact, C(G) the space of continuous complex-valued functions on the group G. A closed linear subspace H⊆ C(G) is called invariant subspace, if it is invariant with respect to translations τ_y ∶ f(x) ↦ f(x + y), y ∈ G. We prove that any invariant subspace H admits spectral synthesis, which means that H coincides with the closure of the linear span of all characters of the group G contained in H.


2012 ◽  
Vol 88 (1) ◽  
pp. 113-122 ◽  
Author(s):  
I. AKBARBAGLU ◽  
S. MAGHSOUDI

AbstractLet $G$ be a locally compact group. In this paper, we show that if $G$ is a nondiscrete locally compact group, $p\in (0, 1)$ and $q\in (0, + \infty ] $, then $\{ (f, g)\in {L}^{p} (G)\times {L}^{q} (G): f\ast g\text{ is finite } \lambda \text{-a.e.} \} $ is a set of first category in ${L}^{p} (G)\times {L}^{q} (G)$. We also show that if $G$ is a nondiscrete locally compact group and $p, q, r\in [1, + \infty ] $ such that $1/ p+ 1/ q\gt 1+ 1/ r$, then $\{ (f, g)\in {L}^{p} (G)\times {L}^{q} (G): f\ast g\in {L}^{r} (G)\} $, is a set of first category in ${L}^{p} (G)\times {L}^{q} (G)$. Consequently, for $p, q\in [1+ \infty )$ and $r\in [1, + \infty ] $ with $1/ p+ 1/ q\gt 1+ 1/ r$, $G$ is discrete if and only if ${L}^{p} (G)\ast {L}^{q} (G)\subseteq {L}^{r} (G)$; this answers a question raised by Saeki [‘The ${L}^{p} $-conjecture and Young’s inequality’, Illinois J. Math. 34 (1990), 615–627].


Sign in / Sign up

Export Citation Format

Share Document