block propagation
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 13)

H-INDEX

4
(FIVE YEARS 2)

Author(s):  
Aeri Kim ◽  
Jungyeon Kim ◽  
Meryam Essaid ◽  
Sejin Park ◽  
Hongtaek Ju

2021 ◽  
Author(s):  
Vincent Acary ◽  
Franck Bourrier ◽  
David Toe ◽  
Francois Kneib

<p><br>Block propagation models are routinely used for the quantitative assessment of rockfall hazard. In these models, one of the major difficulties is the development of physically consistent and field applicable approaches to model the interaction between the block and the natural terrain. For most of propagation models, a thorough calibration of the input parameters is not available over the wide range of configurations encountered in practice. Consequently, the parameters choice is strongly depending on expert knowledge. In addition, most of models exhibit substantial sensitivity to some parameters, i.e. small changes of these parameters entail large differences in the simulation results.</p><p>The trajectory analysis platform Platrock, freely available upon request (contact: [email protected]), allows performing 2D and 3D simulations using both material point rebound models and models, based on non-smooth mechanics, that explicitly account for block shape. This platform provides several simulation tools for detailed analyses of block propagation on study sites.</p><p>The possibilities of the predictive capabilities of different block propagation modelling approaches integrated into the Platrock platform have been assessed on a well-documented study site, where a benchmark of propagation models has been done in the context of C2ROP research project. This analysis emphasized the capacities of trajectory analyses to traduce block propagation but also demonstrated their substantial sensitivity to model parameters. The results from these simulations cannot be relevantly interpreted if they are not accompanied with calibration proofs, sensitivity analysis, and detailed interpretation of the results from the expert in charge of the study.</p>


2021 ◽  
Author(s):  
Franck Bourrier ◽  

<p>A comparative analysis between block propagation experiments and predictive simulations of block trajectories was conducted to evaluate the predictive capacities of block propagation analyses. Approximately one hundred blocks were released on two propagation paths with topographical discontinuities and configurations promoting block rolling. The block propagation was analysed at specific locations of the paths, called evaluation screens. A significant variability of the block velocities was measured at the screens and bimodal distributions of the velocities were observed for the screens located downhill topographical discontinuities.</p><p>The comparative analysis between the experimental results and the predictive simulations shows a large variability of the simulations results, that illustrates the uncertainties related with these predictions, done without calibration data. Specific limitations of the block propagation models were shown as regards to the modelling of block propagation similar to rolling motion on soft soils. Finally, the simulations were shown more predictive for extreme velocities than for mean ones and for block passing probabilities.</p><div> <div> <div></div> <div>What do you want to do ?</div> New mail</div> </div><div> <div> <div></div> <div>What do you want to do ?</div> New mail</div> </div>


Author(s):  
Teng Long ◽  
Shan Qu ◽  
Qi Li ◽  
Huquan Kang ◽  
Luoyi Fu ◽  
...  
Keyword(s):  

Author(s):  
Xuefei Zhang ◽  
Wenbo Xia ◽  
Xiaochen Wang ◽  
Junjie Liu ◽  
Qimei Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document