trx fold
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 4)

H-INDEX

1
(FIVE YEARS 0)

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1843
Author(s):  
Min-Kyu Kim ◽  
Lei Zhao ◽  
Soyoung Jeong ◽  
Jing Zhang ◽  
Jong-Hyun Jung ◽  
...  

Thioredoxin (Trx), a ubiquitous protein showing disulfide reductase activity, plays critical roles in cellular redox control and oxidative stress response. Trx is a member of the Trx system, comprising Trx, Trx reductase (TrxR), and a cognate reductant (generally reduced nicotinamide adenine dinucleotide phosphate, NADPH). Bacterial Trx1 contains only the Trx-fold domain, in which the active site CXXC motif that is critical for the disulfide reduction activity is located. Bacterial Trx2 contains an N-terminal extension, which forms a zinc-finger domain, including two additional CXXC motifs. The multi-stress resistant bacterium Deinococcus radiodurans encodes both Trx1 (DrTrx1) and Trx2 (DrTrx2), which act as members of the enzymatic antioxidant systems. In this study, we constructed Δdrtrx1 and Δdrtrx2 mutants and examined their survival rates under H2O2 treated conditions. Both drtrx1 and drtrx2 genes were induced following H2O2 treatment, and the Δdrtrx1 and Δdrtrx2 mutants showed a decrease in resistance toward H2O2, compared to the wild-type. Native DrTrx1 and DrTrx2 clearly displayed insulin and DTNB reduction activity, whereas mutant DrTrx1 and DrTrx2, which harbors the substitution of conserved cysteine to serine in its active site CXXC motif, showed almost no reduction activity. Mutations in the zinc binding cysteines did not fully eliminate the reduction activities of DrTrx2. Furthermore, we solved the crystal structure of full-length DrTrx2 at 1.96 Å resolution. The N-terminal zinc-finger domain of Trx2 is thought to be involved in Trx-target interaction and, from our DrTrx2 structure, the orientation of the zinc-finger domain of DrTrx2 and its interdomain interaction, between the Trx-fold domain and the zinc-finger domain, is clearly distinguished from those of the other Trx2 structures.


2021 ◽  
Vol 22 (2) ◽  
pp. 802
Author(s):  
Maxim Stolyarchuk ◽  
Julie Ledoux ◽  
Elodie Maignant ◽  
Alain Trouvé ◽  
Luba Tchertanov

Redox (reduction–oxidation) reactions control many important biological processes in all organisms, both prokaryotes and eukaryotes. This reaction is usually accomplished by canonical disulphide-based pathways involving a donor enzyme that reduces the oxidised cysteine residues of a target protein, resulting in the cleavage of its disulphide bonds. Focusing on human vitamin K epoxide reductase (hVKORC1) as a target and on four redoxins (protein disulphide isomerase (PDI), endoplasmic reticulum oxidoreductase (ERp18), thioredoxin-related transmembrane protein 1 (Tmx1) and thioredoxin-related transmembrane protein 4 (Tmx4)) as the most probable reducers of VKORC1, a comparative in-silico analysis that concentrates on the similarity and divergence of redoxins in their sequence, secondary and tertiary structure, dynamics, intraprotein interactions and composition of the surface exposed to the target is provided. Similarly, hVKORC1 is analysed in its native state, where two pairs of cysteine residues are covalently linked, forming two disulphide bridges, as a target for Trx-fold proteins. Such analysis is used to derive the putative recognition/binding sites on each isolated protein, and PDI is suggested as the most probable hVKORC1 partner. By probing the alternative orientation of PDI with respect to hVKORC1, the functionally related noncovalent complex formed by hVKORC1 and PDI was found, which is proposed to be a first precursor to probe thiol–disulphide exchange reactions between PDI and hVKORC1.


2020 ◽  
Author(s):  
Théo Le Moigne ◽  
Libero Gurrieri ◽  
Pierre Crozet ◽  
Christophe H. Marchand ◽  
Mirko Zaffagnini ◽  
...  

AbstractThioredoxins (TRXs) are ubiquitous disulfide oxidoreductases structured according to a highly conserved fold. TRXs are involved in a myriad of different processes through a common chemical mechanism. Plant thioredoxins evolved into seven types with diverse subcellular localization and distinct protein targets selectivity. Five TRX types coexist in the chloroplast, with yet scarcely described specificities. We solved the first crystal structure of a chloroplastic z-type TRX, revealing a conserved TRX fold with an original electrostatic surface potential surrounding the redox site. This recognition surface is distinct from all other known TRX types from plant and non-plant sources and is exclusively conserved in plant z-type TRXs. We show that this electronegative surface endows TRXz with a capacity to activate the photosynthetic Calvin-Benson cycle enzyme phosphoribulokinase. TRXz distinct electronegative surface thereby extends the repertoire of TRX-target recognitions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Craig A. Bayse ◽  
Eric S. Marsan ◽  
Jenna R. Garcia ◽  
Alexis T. Tran-Thompson

Abstract Iodothyronine deiodinases (Dios) are important selenoproteins that control the concentration of the active thyroid hormone (TH) triiodothyronine through regioselective deiodination. The X-ray structure of a truncated monomer of Type III Dio (Dio3), which deiodinates TH inner rings through a selenocysteine (Sec) residue, revealed a thioredoxin-fold catalytic domain supplemented with an unstructured Ω-loop. Loop dynamics are driven by interactions of the conserved Trp207 with solvent in multi-microsecond molecular dynamics simulations of the Dio3 thioredoxin(Trx)-fold domain. Hydrogen bonding interactions of Glu200 with residues conserved across the Dio family anchor the loop’s N-terminus to the active site Ser-Cys-Thr-Sec sequence. A key long-lived loop conformation coincides with the opening of a cryptic pocket that accommodates thyroxine (T4) through an I⋯Se halogen bond to Sec170 and the amino acid group with a polar cleft. The Dio3-T4 complex is stabilized by an I⋯O halogen bond between an outer ring iodine and Asp211, consistent with Dio3 selectivity for inner ring deiodination. Non-conservation of residues, such as Asp211, in other Dio types in the flexible portion of the loop sequence suggests a mechanism for regioselectivity through Dio type-specific loop conformations. Cys168 is proposed to attack the selenenyl iodide intermediate to regenerate Dio3 based upon structural comparison with related Trx-fold proteins.


2004 ◽  
Vol 48 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Antonio C. Bianco

The three iodothyronine deiodinases catalyze the initiation (D1, D2) and termination (D3) of thyroid hormone effects in vertebrates. A recently conceived 3-dimensional model predicts that these enzymes share a similar structural organization and belong to the thioredoxin (TRX) fold superfamily. Their active center is a selenocysteine-containing pocket defined by the beta1-alpha1-beta2 motifs of the TRX fold and a domain that shares strong similarities with the active site of iduronidase, a member of the clan GH-A fold of glycoside hydrolases. While D1 and D3 are long-lived plasma membrane proteins, D2 is an endoplasmic reticulum resident protein with a half-life of only 20min. D2 inactivation is mediated by selective UBC-7-mediated conjugation to ubiquitin, a process that is accelerated by T4 catalysis, thus maintaining local T3 homeostasis. In addition, D2 interacts with and is a substrate of the pVHL-interacting deubiquitinating enzymes (VDU1 and VDU2); thus deubiquitination regulates the supply of active thyroid hormone in D2-expressing cells.


Sign in / Sign up

Export Citation Format

Share Document