erf protein
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chaofeng Wu ◽  
Hailiang Cheng ◽  
Shuyan Li ◽  
Dongyun Zuo ◽  
Zhongxu Lin ◽  
...  

Abstract Background Gossypium hirsutum L. (cotton) is one of the most economically important crops in the world due to its significant source of fiber, feed, foodstuff, oil and biofuel products. However, the utilization of cottonseed was limited due to the presence of small and darkly pigmented glands that contain large amounts of gossypol, which is toxic to human beings and non-ruminant animals. To date, some progress has been made in the pigment gland formation, but the underlying molecular mechanism of its formation was still unclear. Results In this study, we identified an AP2/ERF transcription factor named GhERF105 (GH_A12G2166), which was involved in the regulation of gland pigmentation by the comparative transcriptome analysis of the leaf of glanded and glandless plants. It encoded an ERF protein containing a converved AP2 domain which was localized in the nucleus with transcriptional activity, and showed the high expression in glanded cotton accessions that contained much gossypol. Virus-induced gene silencing (VIGS) against GhERF105 caused the dramatic reduction in the number of glands and significantly lowered levels of gossypol in cotton leaves. GhERF105 showed the patterns of spatiotemporal and inducible expression in the glanded plants. Conclusions These results suggest that GhERF105 contributes to the pigment gland formation and gossypol biosynthesis in partial organs of glanded plant. It also provides a potential molecular basis to generate ‘glandless-seed’ and ‘glanded-plant’ cotton cultivar.


2021 ◽  
Author(s):  
Chaofeng Wu ◽  
Hailiang Cheng ◽  
Shuyan Li ◽  
Dongyun Zuo ◽  
Zhongxu Lin ◽  
...  

Abstract Background: Gossypium hirsutum L. ( cotton) is one of the most economically important crops in the world due to its significant source of fiber, feed, foodstuff, oil and biofuel products. However, the utilization of cottonseed was limited due to the presence of small and darkly pigmented glands that contain large amounts of gossypol, which is toxic to human beings and non-ruminant animals. To date, some progress has been made in the pigment gland formation, but the underlying molecular mechanism of its formation was still unclear.Results: In this study, we identified an AP2/ERF transcription factor named GhERF105 (GH_A12G2166), which was involved in the regulation of gland pigmentation by the comparative transcriptome analysis of the leaf of glanded and glandless plants. It encoded an ERF protein containing a converved AP2 domain which was localized in the nucleus with transcriptional activity, and showed the high expression in glanded cotton accessions that contained much gossypol. Virus-induced gene silencing(VIGS) against GhERF105 caused the dramatic reduction in the number of glands and significantly lowered levels of gossypol in cotton leaves. GhERF105 showed the patterns of spatiotemporal and inducible expression in the glanded plants. Conclusions: These results suggest that GhERF105 contributes to the pigment gland formation and gossypol biosynthesis in partial organs of glanded plant. It also provides a potential molecular basis to generate ‘glandless-seed’ and ‘glanded-plant’ cotton cultivar.


2021 ◽  
Author(s):  
Chaofeng Wu ◽  
Hailiang Cheng ◽  
Shuyan Li ◽  
Dongyun Zuo ◽  
Zhongxu Lin ◽  
...  

Abstract Background: Gossypium hirsutum L. ( cotton) is one of the most economically important crops in the world due to its significant source of fiber, feed, foodstuff, oil and biofuel products. However, the utilization of cottonseed was limited due to the presence of small and darkly pigmented glands that contain large amounts of gossypol, which is toxic to human beings and non-ruminant animals. To date, some progress has been made in the pigment gland formation, but the underlying molecular mechanism of its formation was still unclear.Results: In this study, we identified an AP2/ERF transcription factor named GhERF105 (GH_A12G2166), which was involved in the regulation of gland pigmentation by the comparative transcriptome analysis of the leaf of glanded and glandless plants. It encoded an ERF protein containing a converved AP2 domain which was localized in the nucleus with transcriptional activity, and showed the high expression in glanded cotton accessions that contained much gossypol. Virus-induced gene silencing(VIGS) against GhERF105 caused the dramatic reduction in the number of glands and significantly lowered levels of gossypol in cotton leaves. GhERF105 showed the patterns of spatiotemporal and inducible expression in the glanded plants. Conclusions: These results suggest that GhERF105 contributes to the pigment gland formation and gossypol biosynthesis in partial organs of glanded plant. It also provides a potential molecular basis to generate ‘glandless-seed’ and ‘glanded-plant’ cotton cultivar.


2020 ◽  
Author(s):  
Chaofeng Wu ◽  
Hailiang Cheng ◽  
Shuyan Li ◽  
Dongyun Zuo ◽  
Zhongxu Lin ◽  
...  

Abstract Background: Upland cotton ( Gossypium hirsutum L.) is one of the most economically important crops worldwide . Cottonseed is a major significant source of fiber, feed, foodstuff, oil and biofuel products. However, the utilization of cottonseed is limited by the presence of small and darkly pigmented glands that contain large amounts of gossypol, which is toxic to human beings and other non-ruminant animals. To date,some progress has been made in the pigment gland formation, but the underlying molecular mechanism of pigment gland formation was still unclear. Results: In this study, we identified an AP2/ERF transcription factor named GhERF105 (Gh_A12G1784), which is involved in the regulation of gland pigmentation, from comparative transcriptome analysis of the leaf transcriptome from two pairs of glanded and glandless accessions, which are CCRI12 and CCRI12XW, L7 and L7XW. This gene encoded an ERF protein containing a converved AP2 domain localized in the nucleus with transcriptional activity., and it showed the high expression in glanded cotton accessions that contained much gossypol. Virus-induced gene silencing(VIGS) against GhERF105 caused the dramatic reduction in the number of glands and significantly lowered levels of gossypol in cotton leaves. GhERF105 showed the patterns of spatiotemporal and inducible expression in the glanded plants. Conclusions: These results suggest that GhERF105 contributes to the pigment gland formation and gossypol biosynthesis in partial organs of glanded plant. It also provides a potential molecular basis to generate ‘glandless-seed’ and ‘glanded-plant’ cotton cultivar.


2020 ◽  
Author(s):  
Chaofeng Wu ◽  
Hailiang Cheng ◽  
Shuyan Li ◽  
Dongyun Zuo ◽  
Zhongxu Lin ◽  
...  

Abstract Background Gossypium hirsutum L. (cotton) is one of the most economically important crops globally. Cottonseed is the significant source of fiber, feed, foodstuff, oil and biofuel products. However, the utilization of cottonseed was limited by the presence of small and darkly pigmented glands that contain large amounts of gossypol, which is toxic to human beings and other non-ruminant animals. To date, there has been some progress in the pigment gland formation, but the underlying molecular mechanism of pigment gland formation was still complicated and unclear. Results In this study, we identified an AP2/ERF transcription factor named GhERF105 (Gh_A12G1784), which was involved in the regulation of gland pigmentation, from comparative transcriptome analysis of the leaf of two pairs of glanded and glandless accessions, which are CCRI12 and CCRI12XW, L7 and L7XW. It encoded an ERF protein localized in the nucleus with transcriptional activation activity containing a conserved AP2 domain, and showed the high expression in glanded cotton accessions that contained much gossypol. Virus-induced gene silencing against GhERF105 caused the dramatic reduction in the number of glands and significantly lowered levels of gossypol in cotton leaves. GhERF105 showed the patterns of spatiotemporal and inducible expression in the glanded plants. Conclusions These results suggest that GhERF105 participates in the pigment gland formation and gossypol biosynthesis in partial tissue of glanded plant. It also provides a potential molecular basis to generate ‘glandless-seed’ and ‘glanded-plant’ cotton cultivar.


2013 ◽  
Vol 162 (2) ◽  
pp. 872-884 ◽  
Author(s):  
Deyong Ren ◽  
Yunfeng Li ◽  
Fangming Zhao ◽  
Xianchun Sang ◽  
Junqiong Shi ◽  
...  
Keyword(s):  

2011 ◽  
Vol 93 (5) ◽  
pp. 319-332 ◽  
Author(s):  
QIANJIE WANG ◽  
WEIWEI QI ◽  
YING WANG ◽  
FAN SUN ◽  
XIAOYIN QIAN ◽  
...  

SummaryAllelic expression of the rice yield-related gene, leucine-rich receptor-like kinase 6 (LRK6), in the hybrid of 93-11 (Oryza sativa L. subsp. Indica var. 93-11) and Nipponbare (O. sativa L. subsp. Japonica var. Nipponbare) is determined by allelic promoter cis-elements. Using deletion analysis of the LRK6 promoter, we identified two distinct regions that might contribute to LRK6 expression. Sequence alignment revealed differences in these LRK6 promoter regions in 93-11 and Nipponbare. One of the segments, named differential sequence of LRK6 promoter 2 (DSLP2), contains potential transcription factor binding sites. Using a yeast one-hybrid assay, we isolated an ethylene-responsive factor (ERF) protein that binds to DSLP2. Sequence analysis and a GCC-box assay showed that the ERF gene, O. sativa ERF 3 (OsERF3), which belongs to ERF subfamily class II, has a conserved ERF domain and an ERF-associated amphiphilic repression repressor motif. We used an in vivo mutation assay to identify a new motif (5′-TAA(A)GT-3′) located in DSLP2, which interacts with OsERF3. These results suggest that OsERF3, an AP2 (APETALA 2 Gene)/ERF transcription factor, binds the LRK6 promoter at this new motif, which might cause differential expression of LRK6 in the 93-11/Nipponbare hybrid.


Planta ◽  
2007 ◽  
Vol 226 (4) ◽  
pp. 815-825 ◽  
Author(s):  
Lijun Wu ◽  
Xiaoliang Chen ◽  
Haiyun Ren ◽  
Zhijin Zhang ◽  
Haiwen Zhang ◽  
...  

1987 ◽  
Vol 194 (1) ◽  
pp. 105-117 ◽  
Author(s):  
Kenan C. Murphy ◽  
Linda Casey ◽  
Nicholas Yannoutsos ◽  
Anthony R. Poteete ◽  
Roger W. Hendrix

Sign in / Sign up

Export Citation Format

Share Document